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INTRODUCTION 
 
Ground water is one of the most important and sensitive components of Florida’s dynamic 
ecosystems.  It is present throughout the framework of Florida’s natural systems from deep 
underground to just below land surface.  More than 700 springs that are known to exist in Florida are 
vivid examples of ground water flowing into surface water bodies (Scott, 2004).  Less obvious, but 
equally important are surface-water – ground-water interactions occurring beneath dry uplands, and in 
lakes, rivers, streams, and along the coast.  Regardless of where ground water exists and flows, it 
plays a major role in ecosystem health and almost every aspect of our lives. 
 
In Florida, we depend on ground water for domestic, municipal, agricultural, recreational and 
industrial needs.  The average Floridian uses more than 140 gallons of ground water per day (Solley 
et al., 1995; U.S. Census, 2005) and more than 90% of Florida’s drinking water comes from ground 
water (Berndt et al., 1998).  With the population of Florida growing at a rate of almost 900 people per 
day, demands on this resource continue to intensify.  Human activities can degrade ground-water 
resources and it has required enormous effort to mitigate the damage.  To ensure the sustainability of 
Florida’s ground-water resources, a balance between human needs and environmental needs is 
essential.   
 
Due to Florida’s hydrogeologic setting, all of Florida’s ground water is vulnerable to contamination.  
In fact, this statement, in a more broad sense, is considered the “First Law of Ground Water 
Vulnerability” by the National Research Council (NRC, 1993) which states: “All ground water is 
vulnerable.”  Furthermore, the NRC defines the phrase “ground-water vulnerability to contamination” 
as the tendency or likelihood for contaminants to reach a specified position in the ground-water 
system after introduction at some location above the uppermost aquifer.  In this report, we adopt a 
similar definition of aquifer vulnerability: the tendency or likelihood for contaminants to reach the 
top of the specified aquifer system after introduction at land surface based on existing knowledge of 
natural hydrogeologic conditions. 
 
Although many hydrogeological characteristics naturally protect Florida’s ground-water resources, 
variations in these characteristics are also the reason some areas are more vulnerable than others.  
Natural processes or human activities can introduce contaminants to ground water either through 
pollution of surface-water bodies or by infiltration through soils and sequences of sediments and 
rocks that overly Florida’s aquifer systems.  Sinkholes, lack of overlying confinement, and permeable 
soils are a few characteristics that can increase the likelihood of contaminants (i.e., from runoff) 
entering an aquifer system.  On the other hand, low-permeability soils and thick clay-rich sediments 
overlying an aquifer system help protect it from contamination introduced at land surface.  Biological, 
chemical and physical aspects of plants, soils, sediments and rock units also help limit the types and 
amounts of contaminants reaching the subsurface aquifer systems. 
 
Recognizing the ubiquitous vulnerability of Florida’s aquifer systems, the Florida Aquifer 
Vulnerability Assessment (FAVA) was developed to identify areas of relative aquifer vulnerability 
based on the local hydrogeologic setting.  Specifically, the FAVA project was designed to provide a 
detailed distribution of relative vulnerability which is based solely on natural properties of Florida’s 
hydrogeology and does not include anthropogenic factors such as land use and contaminant loading 
(Maddox and Arthur, 1996).  Technically, this approach defines the FAVA project as an estimate of 
intrinsic vulnerability because it includes only the physical factors affecting flow and does not include 
natural and human sources of contamination or behavior of specific contaminants (Focazio et al., 
2003). 
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The primary goal of the FAVA project is to provide a scientifically defensible water-resource 
management and protection tool that will facilitate planning of human activities to help in minimizing 
adverse impacts on ground-water quality.  More specific applications of the FAVA project include 
well-head protection, source-water protection, watershed and ecosystem comprehensive planning, 
land-use planning/zoning, land conservation and as a component of ground-water susceptibility 
models.  These models, unlike vulnerability (as defined herein), address movement of a contaminant 
through the ground-water flow system.  Results of the FAVA project also serve as valuable 
educational resources to promote stewardship of Florida’s ground water and aquifer systems. 
 
The FAVA project is not the first science-based resource designed to serve as a tool for evaluating 
ground-water contamination potential.  In 1985, the U.S. Environmental Protection Agency (EPA) 
and the National Water Well Association (NWWA) developed a method to estimate the 
contamination potential of ground water by incorporating various components of the natural 
hydrogeologic system.  This model, known as DRASTIC (see Introduction – Background – Previous 
Studies for more information), was an important first step toward a resource protection tool designed 
to identify areas of relative vulnerability.   
 
DRASTIC was developed as a nationwide model, and as such, it has limitations when applied to more 
localized areas of the country with relatively unique hydrogeologic settings.  For example, in Florida, 
use of the DRASTIC model placed an overemphasis on topography and did not account for the 
significant role of karst features in aquifer vulnerability.  Karst features, such as sinkholes, often 
function as uninhibited shortcuts for contamination to enter an aquifer system and therefore should be 
an essential input into any aquifer vulnerability assessment in Florida.  Moreover, DRASTIC maps 
were based on a subjective ranking method, generally highly-variable data quality, and the resulting 
scores yielded sharp angular boundaries that generally did not reflect natural conditions (Figure 1).  
 
Implementation of DRASTIC began in Florida in 1986, which pre-dated readily available geographic 
information systems (GIS).  DRASTIC was initially put into practice by utilizing paper map overlays 
and was later converted for use in a GIS platform in 1998 with the DRASTIC index values and 
weighted scores included in the data attribution. DRASTIC index values range from 1-276 and higher 
values indicate areas of higher aquifer vulnerability. In several studies completed more recently, the 
DRASTIC method has been applied to take full advantage of the GIS platform (see Introduction – 
Background – Previous Studies).  The FAVA method was specifically designed for the GIS platform, 
which facilitates calculation and management of highly complex and resolute data.  This platform 
also allows the achievement of three requisite objectives of the FAVA method, which are that the 
model be scalable, updateable, and flexible.  The GIS platform allows the combination of a series of 
input data layers within a statistical model to yield a derivative output map that represents predicted 
areas of relative aquifer vulnerability.   
 
Attempts to develop a predictive tool such as the FAVA method have been limited by the availability 
of data upon which the model was based.  As one would expect, greater accuracy and higher 
resolution of input data layers allows for a more accurate and highly resolved output (i.e., map of 
relative aquifer vulnerability).  The assumption was made that the input data were appropriate with 
respect to addressing the defined problem: where are Florida’s aquifer systems most and least 
vulnerable to surface sources of contamination?  Perhaps equally important to the process is that data 
layers should be consistently and continually developed, especially over such a large study area as the 
entire State of Florida.   
 
It should be noted that significantly more detailed data layers can be generated at a local scale, such 
as a county or a springshed.  For example, at the statewide scale, it was not time or cost-effective to
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Figure 1. DRASTIC map of vulnerability of the Floridan Aquifer System in Florida (Aller et al., 
1985) designed to estimate the contamination potential of ground water by incorporating 
various components of the natural hydrogeologic system.  The higher DRASTIC scores indicate 
areas of higher aquifer vulnerability. 
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attempt to classify all topographic depressions (of which there are more than 200,000) into various 
karst types; however, this effort may not be cost-prohibitive at a local scale.  Cave conduit maps and 
lineaments are other examples of input data layers that should be included in a local-scale FAVA 
project. 
 
This report generally follows the FAVA project management plan.  The Introduction describes 
background information, previous works, and the role of the Technical Advisory Committee (TAC).  
A description and assessment of each model considered for application in the FAVA project is also 
presented in the Introduction.  Although only one model technique was ultimately selected and used 
for the production of the FAVA maps, the other modeling techniques were used as tools for validating 
the results.  Results contains two major parts: 1) details regarding all data layers (even those used for 
validation purposes) developed as input for the FAVA project and 2) results of the modeling efforts 
(model output) for the three principal aquifer systems in Florida, which are, as defined by 
Southeastern Geological Society (1986), the: 
 

• Surficial Aquifer System (SAS), including the Biscayne Aquifer in southeastern Florida and 
the Sand and Gravel Aquifer in the Florida panhandle,  

• Intermediate Aquifer System (IAS) where it forms a major regional aquifer system in 
southwestern Florida, and,  

• Floridan Aquifer System (FAS).   
 
In the Discussion, model validation is presented along with Application of the FAVA Maps, perhaps 
the most important part of this report aside from the FAVA maps themselves.  Due to the statewide 
focus of the FAVA project, application of the results at a local scale should be carried out with 
caution.  FAVA maps are predictions based on statistical probability and should be used only as a 
guide for relative vulnerability, but not as a definitive statement of vulnerability at a site-specific 
location.  Although FAVA maps were developed in an attempt to reduce uncertainty regarding 
aquifer vulnerability, only site-specific hydrogeologic data and interpretation by a licensed 
Professional Geologist can be used to provide site-specific information on contamination potential of 
the aquifer system(s) on a local basis. 
 
Background 
 

Previous Studies 
 
Aquifer vulnerability models generally fall into four categories: index models, simulation models, 
statistical (i.e., probabilistic, experimental) models and hybrid models (Metz, 1993; NRC, 1993; 
Bonham-Carter, 1994; Rupert, 1997; Rupert 1999; Focazio et al., 2002).  A fifth more qualitative 
technique involves the subjective comparison of hydrogeological characteristics of a given area.  
Index models combine spatial data layers (i.e., maps showing different parameters) by calculating a 
weighted score.  Simulation models are used to consider the role of hydrologic and hydrogeologic 
processes such as transport and dispersion.  Multivariate methods, fuzzy logic, and probability 
analyses are among the statistical group of models.  Hybrid models, as the name implies, comprise a 
combination of these other methods. 
 
Another aspect of aquifer vulnerability modeling pertains to the source of information on which the 
model is based.  In this regard, the model is either considered knowledge driven or data driven.   
Knowledge-driven models (also known as “expert” models) rely on expert scientific opinion, insight 
and perhaps even anecdotal information, whereas data-driven models are based on measured 
observations.  This section highlights a few of the many publications that have addressed aquifer 
contamination modeling. 
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Perhaps the most widely known and applied index model is the DRASTIC model (Aller et al., 1985), 
which was developed in a cooperative effort between the EPA and the NWWA.  This ground-water 
vulnerability assessment tool allows application of hydrogeological characteristics to produce an 
index score of aquifer vulnerability to contamination from land surface.  The components of 
DRASTIC include: Depth-to-water table, net Recharge, Aquifer media, Soil media, Topography, 
Impact of the vadose zone, and hydraulic Conductivity of the aquifer.   
 
Wurm (1992) used the DRASTIC method in Ohio to assess the relative vulnerability of a confined 
aquifer.  Merchant (1994) provided a critical assessment of the DRASTIC method where he not only 
made recommendations for improvements to the DRASTIC model, but also reviewed methods of 
utilizing GIS in its implementation. Navulur et al. (1995) evaluated the vulnerability of aquifers to 
non-point source pollution.  They analyzed soils data in a GIS platform using both DRASTIC and the 
SEEPAGE (System for Early Evaluation of Pollution potential of Agricultural Groundwater 
Environments) index model. The models were modified to include land use and fertilizer application 
data layers.  Results were validated using known locations of nitrate contamination.  Navular et al. 
(1995) recognized the strength of their modified method at the smaller scale and recommended that 
more detailed simulation models such as Groundwater Loading Effects of Agricultural Management 
Systems (GLEAMS; Leonard et al., 1987) be applied at the field scale.  
 
Rupert et al. (1991) developed a map of aquifer vulnerability in Idaho using a modified form of the 
DRASTIC method which depended upon only three of the seven DRASTIC parameters: depth-to-
water, net recharge, and soil media. Rupert (1997) later used a point rating scheme for measured 
nitrite plus nitrate as nitrogen (NO2+NO3–N) in ground water to calibrate the DRASTIC mapping 
technique based on statistical correlation between NO2+NO3–N concentrations, land use, soils, and 
depth-to-water table.  Calibration of this method and an overall summary is presented in a U.S. 
Geological Survey (USGS) Fact Sheet (Rupert, 1999).  Witkowski et al. (2003) coupled a DRASTIC 
index approach with MODFLOW to assess aquifer vulnerability as defined herein plus some degree 
of transport within the aquifer.  During MODFLOW calibration, recharge, hydraulic conductivity and 
flow velocities in the aquifer were determined, and then applied in the index model to produce a 
vulnerability map. 
 
As mentioned in the Introduction of this report, one of the shortcomings of the DRASTIC model in 
limestone terrains pertains to a lack of consideration of karst processes, which are very significant 
hydrogeologic features in Florida.  Doerfliger et al. (1999) developed a weighted-index, GIS-based 
method called EPIK.  This approach utilizes the following parameters: epikarst, protective cover, 
infiltration conditions and karst network development.  Potential refinements could be made to this 
method, such as characterization of the cation exchange capacity of soils in the protective cover, or 
further characterization the epikarst with tracer tests and geophysics; the EPIK method, however, is a 
valuable resource for delineating ground-water protection zones. 
 
At least three qualitative vulnerability assessments have been completed in Florida.  A statewide map 
of recharge to the Floridan Aquifer System (Stewart, 1980) can be considered a surrogate for relative 
aquifer vulnerability (and vice versa).  Recharge areas delineated in his study were generally based on 
regional observations of potentiometric surfaces, depth to the aquifer, confinement thickness and 
karst. Beck and Jenkins (1988) provide a subjective estimation of ground-water pollution potential 
based on hydrogeologic characteristics including karst, surface drainage, and types of overburden. 
They utilized an Environmental Geology Map Series published by the Florida Geological Survey 
[FGS (see Results – Data Coverages – Environmental Geology for more information and full 
reference)] delineated areas of vulnerability into 11 major classes divided into two groups to 
distinguish between internally drained areas and areas that were drained by surface water.   
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A statistical method for assessing aquifer sensitivity/vulnerability within a glacio-hydrogeologic 
system was conducted by Chidester (1993).  Nolan (2001) applied logistic regression to USGS 
National Water-Quality Assessment data to assess aquifer susceptibility to contamination.  He 
reported that the most significant factors contributing to nitrate contamination of ground water in the 
United States are: 1) nitrogen fertilizer loading, 2) percent cropland/pasture, 3) population density, 
4) percent well-drained soils, 5) depth to minimum water table, and 6) presence/absence of fracture 
zones within an aquifer.   Bekesi and McConchie (2000) conducted an empirical assessment of 
vulnerability in the vadose zone.  Their models focused on sorption capacity within geologic media 
comprising the unsaturated aquifer.  An R-mode factor analysis was used by Lawrence and Upchurch 
(1982) to associate water-quality analytes in terms of processes affecting aquifer recharge.  The 
resulting factors were attributed to regional carbonate dissolution, localized dissolution and ion 
exchange in confining sediments, and land use.  Dixon et al., (2001) are among researchers applying a 
neural network approach to predicting vulnerability with an emphasis on soil structure. 
 
Use of GIS to predict ground-water vulnerability to pesticide contamination was accomplished by 
Tim et al. (1996). Their study was driven by a need to combine an integrated and interactive modeling 
system entirely within a GIS platform. Hoogeweg and Hornsby (1998) developed an interactive GIS-
based simulation model called SEAMS (Soil, Environmental, and Agricultural Management 
Systems). This program allows for the estimation of pesticide risk to the ground water beneath 
application sites by combining digitized soil data, pesticide fate, toxicity data, cultural practices, and 
weather data.  Other simulation models, which some may also consider hybrid models, include the 
works of Stewart and Loague (2003), Connell and van den Dale (2003) and Huaming and Wang 
(2004).  This cross section of studies underscores the diversity in approach and scale of vulnerability 
mapping.  Processes that are included in these modeling/mapping efforts address sorption, advection-
dispersion, recharge, leaching potential and contaminant degradation (and non-degradation). 
 
Another approach to ground-water vulnerability mapping emphasizes point-source versus non-point-
source contaminants.  These contaminant-specific studies are considered “specific vulnerability” 
assessments (NRC, 1993).  For non-point sources, Roux et al. (1986) address pesticides, Sauriol 
(1982) evaluates the effects of septic systems, Edmunds and Kinniburgh (1986) and Holmberg et al. 
(1987) both focus on acid deposition, and Carter et al. (1987) address nitrates.  Point-source studies 
include LeGrand (1983), who developed a vulnerability mapping technique to evaluate landfills, 
while DeSmedt et al. (1987) and Porcher (1988) developed vulnerability mapping for use with both 
point and non-point sources of pollution.  
 

Laws of Ground-Water Vulnerability 
 
In 1993, the NRC (1993) presented three laws of ground-water vulnerability: 1) all ground water is 
vulnerable, 2) uncertainty is inherent in all vulnerability assessments, and 3) the obvious may be 
obscured and the subtle indistinguishable.  As noted above, the first law was adopted earlier in this 
section of the report.  The second and third laws are hereby adopted for application of the FAVA 
method as well.  These laws underscore the basic principals regarding application of FAVA maps for 
environmental decision making (see also Discussion – Appropriate Use of FAVA Maps).   
 
The NRC (1993) also presented six vulnerability assessment case studies (including Florida) to 
provide examples of the diverse techniques available and the factors that influenced the selected 
method for assessment. The NRC offered ways to understand the inherent substantial uncertainties in 
various vulnerability assessment methods and provided implementation recommendations for policy-
makers and managers.  Similarly, Focazio et al. (2002) presented common approaches used to 
determine ground-water vulnerability. The authors present examples of ground-water vulnerability 
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modeling approaches with a focus on hydrogeological processes as well as ways to assess scientific 
defensibility of assessments. 
 
APPROACH 
 
The FAVA project was initiated after a series of meetings within the Florida Department of 
Environmental Protection (FDEP) on the subject of recharge protection and aquifer vulnerability in 
Florida.  The name FAVA was introduced and adopted at a meeting of the FDEP Aquifer 
Vulnerability Subcommittee of the Recharge Protection Committee in April, 1995.  As the FAVA 
project began at the FGS, several key issues were identified and addressed during the early stages of 
project management.  These included: stating the problem, identifying the end users of the model, 
data gathering and processing, prioritization of data refinement, addressing data scale, data resolution 
and quality issues, model assessment and selection, and model validation.   
 
An important goal of the FAVA project was to model or estimate the natural vulnerability of 
Florida’s aquifer systems to contamination from land surface. In other words, the FAVA project is a 
pre-development model and the results do not take into consideration different land uses or altered 
natural systems (i.e., soil alteration, or cones of depression).  As a result, the use of pre-development 
data for input into the model was appropriate. For example, when estimating the difference in 
hydraulic head between the water table and the FAS, a map of the predevelopment potentiometric 
surface was used (see Results – Hydraulic Head Difference between Water Table and Floridan 
Aquifer System for more information). 
 
The initial phase of the project involved identifying all spatial data potentially relevant to aquifer 
vulnerability in Florida.  These data were evaluated in terms of availability, accuracy, format, 
consistency, statewide coverage and source.  During this data acquisition and evaluation phase, it 
became apparent that most of the relevant spatial data layers (i.e., GIS coverages) were 1) not readily 
available, 2) less accurate than desired, 3) had poor resolution, or 4) required patching data together 
from disparate sources of different scales and resolutions.  Additional data coverage issues pertained 
to how to address missing data, and how to apply the data (i.e., what is being asked of the data).   
 
The USGS 30-meter (m) horizontal-resolution digital elevation model (DEM) is one example where 
these attributes were recognized.  Numerous differences exist between the USGS DEM and the USGS 
7.5-minute quadrangle maps, many exceeding 50 feet.  For the FAVA project, accuracy of a DEM 
was of paramount importance in the development of model input data coverages which were based on 
land-surface elevations including: thickness of IAS, thickness of overburden sediments on IAS, 
closed topographic depressions and water-table elevation.  To develop a seamless statewide, highly-
accurate topographic coverage, significant resources were dedicated toward development of a new 
statewide FDEP DEM at the resolution of USGS 7.5-minute quadrangle maps (see Results – Data 
Coverages – Topography).   
 
Another example of where these attributes were recognized was the IAS thickness map. Although 
some IAS thickness maps have been published for parts of the State, the raw data upon which the 
maps were based was not readily available.  Moreover, significant and irresolvable edge-matching 
problems occurred upon attempting to splice these maps together.  As a result, another priority of the 
FAVA project was to generate a new statewide thickness of confinement map (see Results – Data 
Coverages – Intermediate Aquifer System thickness) based on data in the FGS lithologic database.  
A similar scale effort was dedicated to the development of the water-table elevation coverage (see 
Results – Data Coverages – Water-Table Elevation). 
 



8 

Data sources for all water-quality and spatial data used in the FAVA project are listed in Table 1 
(Specific publications are referenced in Results).  Considerable effort was made to standardize these 
data across agency formats and measures for quality control were implemented.  As all data types 
were accumulated, evaluated and refined for application in the FAVA project, data and file 
management became a priority, as well as the data sources and related information.  Extensive 
metadata were recorded for the input data layers used to develop the final FAVA output data layers.  
Appendix I provides an example of metadata for the new FDEP DEM, which was developed at the 
FGS in cooperation with the Division of Water Resource Management (DWRM) at the FDEP and 
Florida’s water management districts.  Metadata for other coverages used in the FAVA project will be 
available from the FDEP website (see http://www.dep.state.fl.us/gis/datadir.asp). 
 
Throughout the development of the FAVA project, a policy of adaptive management was 
implemented.  Part of this process involved the assembly and collective input from a multi-agency 
Technical Advisory Committee (TAC).  FAVA TAC members (Table 2) participated alongside the 
FAVA research team (i.e., authors of this report) in four workshops, provided technical review of 
interim text and maps, and generally served as a sounding board as the project progressed.  The TAC 
members were also points of contact for agency resources (i.e., GIS coverages and raw data).  
Expertise among TAC members included water quality, hydrologic modeling, hydrogeology and 
some contributed first-hand experience in development of the Florida DRASTIC model.  As feedback 
from the TAC was received, “course corrections” in the data development and project plans were 
made.   
 
Dr. Gary Raines of the USGS office in Reno, Nevada is a co-developer and expert in the use and 
application of the modeling technique used in the development of FAVA vulnerability maps. Dr. 
Raines generously provided his time and expertise throughout the entire development of this project. 
Dr. Raines made several visits the FGS office to guide the project, provide technical expertise and 
assist with the modeling. Dr. Raines provided invaluable support and feedback on the project and 
attended TAC meetings as well to provide input and assist in explaining the modeling technique to 
the TAC members.  
 
As noted at the beginning of this section, one of the goals of the FAVA project involved identifying 
potential end-users of the FAVA maps.  The FAVA research team was fortunate to include Shaun 
Ferguson, a part-time FGS staff member with expertise in planning and needs assessments.  During 
his tenure on the FAVA project, Shaun completed a Delphi study, which was comprised of three 
surveys utilizing broad questions with open-ended answers, each building on the results of the prior 
survey.  Many TAC members participated in the study.  The goal of the Delphi study was to reach 
consensus regarding the FAVA approach, the relative benefits of the FAVA project as compared to 
DRASTIC, and FAVA end-product design (i.e., maps and scale).  Among the many useful aspects of 
the Delphi study was this list of the most important features that should be included in the FAVA 
approach to make the final product more useful: 
 

• Appropriate list of parameters 
• Sensitivity of scale (e.g., GIS grid-cell size adequate to represent karst) 
• Address and reduce uncertainties 
• Well-documented methodology 
• Easy to upgrade given future data 
• Easy to comprehend 
• Clarity in presentation of results 
• Use of existing data 
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Table 1. FAVA point and spatial data sources. 

 
Name Source 

Wells and water-level data for water-table 

elevation 

Florida Department of Environmental Protection 

(FDEP), Florida's Water Management Districts, 

U.S. Geological Survey (USGS) 

National Hydrography Dataset (streams, lakes 

and coastline) 
USGS 

Soil Survey Geographic database 
U.S. Department of Agriculture (USDA) 

Natural Resource Conservation Service (NRCS) 

State Soil Geographic database USDA NRCS  

USGS 7.5-minute quadrangle maps 
FDEP, Florida's Water Management Districts, 

USGS 

Well core and cuttings samples FDEP/Florida Geological Survey (FGS) 

Potentiometric surface (predevelopment) USGS  

Physiographic provinces FDEP/FGS 

Geologic map of the State of Florida FDEP/FGS 

Environmental geology of the State of Florida FDEP/FGS 

Background Water Quality Monitoring Network 

well data 
FDEP 

Generalized Water Information System 

Database 
FDEP 

Land use data Florida’s Water Management Districts; FDEP 
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Table 2. Members of the FAVA TAC and their associated organizations. 

 
Name Agency/Company 

Rick Copeland FDEP-FGS 

Richard Deadman Florida Department of Community Affairs 

Rodney DeHan FDEP-FGS 

Eric Dehaven Southwest Florida Water Management District 

Mark Dietrich FDEP 

Tim Hazlett Hazlett-Kincaid, Inc. 

Jeff Herr South Florida Water Management District 

Paul Lee FDEP 

Gary Maddox FDEP 

James McNeal FDEP 

Multiple USGS – Trudy Phelps, Nicolas Sepulveda 

Tom Pratt Northwest Florida Water Management District 

Allan Stodghill FDEP 

David Toth St. Johns River Water Management District 

Sam Upchurch SDII Global Corporation, Inc. 

Warren Zwanka Suwannee River Water Management District 

 
In general, Ferguson (2002) reported overwhelming agreement that the FAVA method, as being 
developed at that time, would be a significant improvement over the DRASTIC model.  Moreover, he 
found that the FAVA project meets all criteria for scientific credibility as defined in the Delphi study; 
however, several “practical utility credibility criteria” at the time of the survey in 2001 were not yet 
achieved.  FAVA researchers anticipate that this is primarily due to the timing of the survey, which 
was conducted when the FAVA project was two years from completion.  
 
In a related assessment of end-user needs, a survey instrument was distributed at the 2001 Annual 
meeting of the Florida Chapter of the American Planning Association.  Highlights of the survey 
results, based on the 37 respondents include: 1) 92% agreed that they would consider the FAVA 
project as a resource in their decision-making process, 2) 95% state that their agency or company uses 
GIS applications, 3) 86% preferred to be able to use the FAVA maps at a scale between 1:24,000 and 
1:150,000; however, others agreed that regional and statewide scales would be beneficial, and 
4) respondents agreed that to make the end-product more useful, data delivery (i.e., Internet and 
compatible file formats) and education/outreach opportunities (i.e., training workshops) are needed. 
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Model - A representation of reality used to simulate a process, understand a 

situation, predict an outcome, or analyze a problem.  A model is structured as a set 
of rules and procedures, including spatial modeling tools that relate to locations on 

the Earth’s surface. 
 

– EPA Mid-Atlantic Integrated Assessment Program Glossary 

 
 
 
Models Considered 
 
Several models were evaluated as potential frameworks upon which FAVA maps would be 
constructed.  To help guide the model selection process, the FAVA TAC assisted in the development 
of selection criteria.  Similar in some ways to the Delphi study, the TAC recommended that the model 
should have the following characteristics: 
 

• Easy to explain 
• Meet identified end-users needs 
• GIS format (scaleable, updateable and flexible) 
• Scientifically-defensible results 
• Results can be validated by geochemistry 

 
Models considered for application in the FAVA project included the Aquifer Vulnerability 
Assessment Model (AVAM), Travel Time, Fuzzy Logic, and Weights of Evidence (WofE).  In this 
section, these models are described and reviewed.   Although only one model was selected as the 
basis for the FAVA method, the other methods were used as independent methods to validate the 
FAVA results.  As a result, all methods initially considered for application are described and 
compared in this section. 
 
Four Florida counties, selected for their diverse hydrogeological settings, were used as pilot areas for 
preliminary FAVA modeling.  The pilot areas included Leon, Alachua, Hillsborough, and Polk 
counties. These counties were selected for use in determining which model technique would produce 
results meeting the goals of the FAVA project identified in the Delphi study and by the TAC. 
Preliminary data was used as input for these models as many of the data coverages were still under 
development at this stage of the project. It was considered important to select the FAVA model 
technique prior to completing the development of the final input data coverages because the type of 
model chosen would ultimately affect the types of input data required. Because preliminary data were 
used, pilot county model results were not included in this report as they were not directly comparable 
to final FAVA model results and did not provide any meaningful analysis. The TAC was instrumental 
in assisting the FAVA research team regarding assessment of preliminary model results developed for 
these counties.   
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Aquifer Vulnerability Assessment Model  
 
The Aquifer Vulnerability Assessment Model (AVAM) was the first post-DRASTIC method to be 
developed by Florida environmental managers at the State level.  The method was generated by 
FDEP staff in the late 1990’s based on a concept that improved DRASTIC by taking full advantage of 
a GIS platform.  Additionally, AVAM was designed to use readily-available, statewide GIS data.  
Upon evaluation, however, the methodology was not used because, like DRASTIC, it was a 
knowledge-driven index-type model subject to bias.  Many of the input layers were based on the 
Natural Resource Conservation Service (NRCS) soil surveys, including depth-to-water, leakance, 
permeability and clay content.  The FGS Environmental Geology Map Series data (see Results – Data 
Coverages – Environmental Geology for more information) was also to be used as a layer. Although 
it was considered to be an improvement over the DRASTIC model, it was not without its share of 
concerns.  For example, it was designed to run different models for the unconfined versus confined 
FAS. As a result, a county having both confined and unconfined FAS conditions would require two 
models.  Results for the two different models would have varied greatly (i.e., have significant “edge 
effects”).  Moreover, the model was to be calibrated for one county and then weights were to be 
applied to other areas with significantly differing hydrogeologic conditions.  On the other hand, the 
development and design of AVAM helped lay the groundwork for implementing the FAVA project. 
 
 

Travel Time Model 
 
The travel time model is based on a “top down” conceptual model of a confined aquifer system, 
where aquifer vulnerability is calculated as a measure of the time required for a contaminant at land 
surface to reach the saturated zone of the target aquifer.  Although the approach was carefully planned 
and the concept is easy to understand, the methodology relies heavily on detailed vertical hydraulic 
conductivity data of the vadose zone, which is very limited in availability.  
 
The travel time model was developed by Drs. Paul Lee and Jonathan D. Arthur based on the 
following parameters: geologic sediment thickness, estimated hydraulic conductivity of these 
sediments and a factor accounting for reduction of potential travel time due to the influence of karst 
topography.  The travel time model is a stochastic estimate of aquifer vulnerability based on the 
following equation and the conceptual framework in Figure 2: 
 

Travel Time = (Ts/Ks + Teg/Keg + Tias/Kias) * Kf 
 
where: 
 
Ts is soil thickness 
Teg is environmental geology thickness 
Tias is IAS thickness 
Ks is soil hydraulic conductivity (weighted average) 
Keg is environmental geology hydraulic conductivity 
Kias is IAS hydraulic conductivity 
Kf is the karst factor 
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Figure 2. Conceptual framework for travel time model where aquifer vulnerability is calculated 
as a measure of the time required for a contaminant at land surface to reach the saturated zone 
of an aquifer. This model uses geologic sediment thickness, estimated hydraulic conductivity of 
these sediments and a factor accounting for influence of karst. 

 
Sediment thicknesses applied in this model technique are obtained from the following sources: 
 

Ts NRCS SSURGO and STASTGO databases. 
 
Teg Calculated difference between the bottom of the soil layer and the top of the IAS. 
 
Tias  Thickness of the IAS based on FGS well core and cuttings data. 

 
The function of the Kf is to decrease the calculated travel time if a sinkhole intersects the grid cell.  Kf 
represents the fraction of a grid cell area intersected by a topographic depression (i.e., sinkhole): [1 – 
(% Area * 0.01)].  If Kf = 1, then no topographic depression intersects the grid cell.  If Kf = 0, then 
100 percent of the grid cell includes a topographic depression. 
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The soil hydraulic conductivity values chosen for input into the travel time model came from the 
NRCS soil tables.  The hydraulic conductivity values for environmental geology (i.e., lithotypes from 
the FGS Environmental Geology Map Series) and IAS input data layers represent average values for 
lithotypes based on Freeze and Cherry (1979). The FGS hydraulic conductivity database was also a 
source of data.  The values chosen for the environmental geology and IAS layers were as follows: 
 

Limestone   10-2 cm/sec 
Medium fine sand and silt  10-3 cm/sec 
Clayey sand   10-4 cm/sec 
IAS    10-5 cm/sec  

 
The major disadvantage in attempting to use the travel time method for FAVA was the lack of 
continuous, reliable hydraulic conductivity values for the IAS and environmental geology layers. In 
order to accurately develop a reliable input data layer representing hydraulic conductivity for these 
layers, it would have been necessary to generate a continuous statewide coverage of hydraulic 
conductivity.  This was not feasible due to limited data availability concerning hydraulic conductivity. 
In addition, use of the hydraulic conductivity values listed above for each layer of geological material 
in the conceptual model was a gross oversimplification and did not accurately represent the natural 
system.  For example, the FGS hydraulic conductivity database indicated that the value for limestone 
in Florida may vary from 10-3 to 10-8 cm/sec.  As a result, the travel time model was not selected for 
use in the development of FAVA models; however, travel time model results were used for validation 
of FAVA pilot areas.  
 
 

Fuzzy Logic Model  
 
Fuzzy logic is used to quantify conceptual processes because it emulates the flexibility of human 
reasoning by drawing conclusions from imprecise and incomplete information (Fang, 1997). This 
modeling technique is particularly useful when applied to evaluate fuzzy inputs because they tolerate 
imprecision and uncertainty and show marked reduction in information loss (Burrough et al., 1992). 
 
Fuzzy logic is a model that takes into account expert scientific knowledge to relate datasets and their 
relative level of importance with respect to the desired output. Fuzzy set theory uses gradational 
membership values to characterize continuous data, where the membership values reflect the degree 
of truth of some pre-position. 
 
Fuzzy logic is comparable to Boolean logic (e.g., “and” and “or”) because it addresses the concept of 
partial truths. The fuzzy logic model can be described as the process of assigning values to events 
using a gradational or continuous scale between 1 and 0, which represent true and false respectively.  
Fuzzy logic is an expert-driven progression in which the developer of the model assigns membership 
values based on their experience and knowledge of the data.  Fuzzy set theory or fuzzy memberships 
address partial truths where 1 is full membership and 0 is full non-membership.  For example, a 
partial truth using this method to define its membership can have a value of 0.8. 
 
As an example, fuzzy membership assignment to the FAVA input data layer, “proximity to karst,” 
(see Results – Data Coverages – Closed Topographic Depressions and Results – FAVA Model 
Outputs – Intermediate Aquifer System and Floridan Aquifer System for more detail of karst as 
applied in FAVA) is provided. An area’s proximity to a karst feature is an important factor in 
determining its relative vulnerability. Distance to karst, for example, can be categorized into 100-m 
intervals and fuzzy logic can be used to assign values to those intervals. A value of 1 representing full 
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membership would be assigned to areas closest to a karst feature. Areas that are farthest away from a 
karst feature would be given a value of 0 to represent full non-membership. Values between would 
then be interpolated from 1 and 0 (Figure 3).  
 

 
Figure 3. Fuzzy membership values relative to “proximity to karst” where areas within 100 m 
of a karst feature represent full membership and areas located 2,000 m from a karst feature is 
full non-membership. Figure for informational purposes only, data not used in FAVA results. 

 
Two or more maps with fuzzy memberships can be combined using a variety of fuzzy operators.  
They can be combined in a relational sense using Boolean operators to calculate the new data layer.  
The operators include: AND, OR, ALGEBRAIC and GAMMA.  Each one of these operators has very 
different effects on a set of values. 
 

Fuzzy Operator AND 
 
The fuzzy operator AND is used to combine input data layers resulting in a new data layer which is 
controlled by the smallest fuzzy membership value occurring at a given location. The AND operation 
is appropriate where two or more pieces of evidence for a hypothesis must be present together for the 
hypothesis to be true (Bonham-Carter, 1994). This conservative operation involves the intersection of 
a set of values for which only the smallest of the membership values for a particular location are 
considered:  
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Fuzzy Operator OR 
 
The fuzzy operator OR involves the union of a set of values where maximum input data layer values 
control the output.  The membership value in this case is limited by the best of the input data layers.  
It should be noted that both the operators AND and OR assign values for the new data layer from only 
one of the input data layers: 
 

Fuzzy operator OR 

Maximum (value 1, value 2) 

Maximum (0.8, 0.45) = 0.8 

 
 

Fuzzy Operator ALGEBRAIC (SUM & PRODUCT) 
 
The fuzzy ALGEBRAIC operator comprises SUM and PRODUCT (PRD) functions. The fuzzy 
ALGEBRAIC operator SUM is an increasing association between two input data layers where two 
pieces of evidence that favor a hypothesis strengthen each other. The combined evidence is more 
supportive than the input data layers are individually and the new data layer is greater or equal to the 
largest contributing membership value: 
 

Fuzzy SUM operator 

1 – [(1 – value 1) * (1 – value 2)] 

1 – [(1 – 0.8) * (1 – 0.45)] 

1 – [( 0.2)(0.55)] 

1 – (0.11) = 0.89 

 
The fuzzy ALGEBRAIC operator PRD is the decreasing association between two input data layers 
and is calculated by multiplying the fuzzy values to produce a new data layer.  Because fuzzy input 
data layer values will be between 1 and 0, when these values are multiplied to produce a new data 
layer, their product will be equal to or lesser than the input data layer values. An example is below:   
 

Fuzzy PRD operator 

(value 1 * value 2) 

(0.8 * 0.45) = 0.36 

 
 

Fuzzy Operator GAMMA (γ) 
 
The gamma operation is a combination of the ALGEBRAIC PRD and the ALGEBRAIC SUM where 
the γ is a parameter in the range of (0, 1).  The function is defined as the fuzzy ALGEBRAIC SUM 
factored by γ, multiplied by the fuzzy algebraic PRD factored by 1- γ.   
 

GAMMA = (Fuzzy algebraic SUM) γ * (Fuzzy algebraic PRD) 1- γ 
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When the γ = 1 the outcome of the operation is the same as the ALGEBRAIC SUM, when γ = 0 the 
outcome is the same as the ALGEBRAIC PRODUCT.  A γ value between 0 and 1 allows for variable 
compromises between the SUM and PRODUCT outputs.  For example, if γ = 0.7 with the 
combination of (0.8, 0.45), the result equals 0.677.  In this example the combination of the two grids 
decreases the output.  Conversely, using a γ = 0.9 to combine the two layers using (0.8, 0.45) yields 
0.813, which increases the association between the two layers. These examples are shown below: 
 

If γ = 0.7,  

and results from Fuzzy SUM and Fuzzy PRD 

calculated above (0.89 and 0.36) are used, then: 

[(0.89)0.7 * (0.36)1–0.7] 

[(0.92) * (0.74)] = 0.677 

 

If γ = 0.9, then  

and results from Fuzzy SUM and Fuzzy PRD 

calculated above (0.89 and 0.36) are used, then: 

[(0.89)0.9 * (0.36)1–0.9] 

[(0.90) * (0.90)] = 0.813 

 
 
Fuzzy logic modeling technique was employed in the development of the IAS FAVA model to 
generate one of the input data layers (see Results – FAVA Model Outputs – Intermediate Aquifer 
System). Fuzzy logic was also used during the development of the FAVA project to help validate 
output data layers from other model techniques. This method was not used, however, in the 
calculation of the final FAVA output data layers for any of the aquifer systems because it is a 
knowledge-driven model technique. Further, this model did not meet the first model technique 
selection criteria of being easy to explain. 
 
 

Weights of Evidence Model 
 
Use of the Weights of Evidence (WofE) modeling technique involves the combination of diverse 
spatial data that are used to describe and analyze interactions and generate predictive models (for a  
detailed discussed of this statistical modeling technique see Bonham-Carter, 1994 and Raines et al., 
2000).  WofE is a data-driven process that utilizes known occurrences as model training sites to 
create maps from weighted continuous input data layers.  These input data layers, known as evidential 
themes, are then combined to yield an output data layer (or result of the model), known as a response 
theme (Raines, 1999).  WofE was adapted to mineral potential mapping in a GIS and is based on the 
application of Bayes’ Rule of Probability, with an assumption of conditional independence (Raines et 
al., 2000).  Although Bayesian theory has been applied to ground-water related issues in recent years 
(e.g., Soulsby et al., 2003; Meyer et al., 2003; and Feyen et al., 2004), the specific application of 
WofE to ground-water issues is very limited to date (Cheng, 2004). See also Appendix I – Glossary 
for more information on WofE terms.  
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When applied in the FAVA project, WofE was used to generate aquifer vulnerability response themes 
(expressed in probability maps). These response themes were generated in the Environmental 
Systems Research Institute (ESRI) ArcView 3.x environment. WofE was executed using the Arc 
Spatial Data Modeler (ArcSDM) which is available free of charge as an internet download (Kemp, et 
al., 2001). ArcSDM is also available to implement in the ESRI ArcGIS software suite.  Versatility of 
the WofE model is demonstrated by its ability to utilize data inputs resulting from other numerical 
and modeling techniques such as fuzzy logic.  The fundamental approach and basic nomenclature of 
WofE is described in the following sections.   
 
 

Study Area 
 
The initial step in implementing a WofE model is the identification and delineation of a study area 
extent (i.e., aquifer system areal extent).  This is a critical step because the area identified is used in 
the calculation of weights and probabilities throughout the modeling process.   
 
 

Training Sites Theme and Prior Probability 
 
Training points are locations of known occurrences.  In mining applications for example, existing 
mines are known occurrences.  In an aquifer vulnerability assessment, wells with water quality 
indicative of high recharge are potential known occurrences. Training points are used in WofE to 
calculate the following parameters: prior probability, weights for each evidential theme, and posterior 
probability of the response theme.  The italicized terms are defined below, and in Appendix I – 
Glossary. 
 
Training points are converted to represent a unit area of the study area, such as a grid cell within a 
GIS application.  The prior probability is calculated by dividing the training point unit area by the 
total study area and represents the probability that a training point will occupy any given unit area 
within that study area, independent of any evidential theme data.  In less complex terms, the prior 
probability is based on prior knowledge of the problem without the benefit of supporting evidence. In 
the mining example, prior probability could be described as the proportion of known deposits within 
the study area. 
 
 

Evidential Themes 
 
An evidential theme is defined as a set of continuous spatial data that is associated with the location 
and distribution of known occurrences, i.e., training points. In GIS terms, an evidential theme is 
analogous to a data layer or coverage.  Evidential themes in the mining example might include the 
location of hydrothermal ore deposits or proximity to faults.  In the FAVA project, soil permeability 
and thickness of confinement are examples of evidential themes. Weights calculated in WofE 
establish spatial associations between training points and evidential themes. Depending on the data 
comprising an evidential theme, in order to deal with random processes and small number of training 
points, it may be necessary to reclassify the data into categories prior to analysis. This is completed 
by grouping large sets of data into fewer, more manageable categories that have statistical 
significance. For example, if an evidential theme consisted of a data layer of confining unit thickness 
divided into one-foot thickness intervals, it might be necessary to classify the data into 10 or 20 feet 
intervals to make it more manageable and statistically significant.  
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Weights are calculated for each evidential theme based on the presence or absence of training points 
with respect to the study area.  A positive weight is calculated for areas that have more points than 
would be expected by chance; the weight is associated with occurrence of evidence.  Conversely, a 
negative weight would be calculated for areas that have fewer points than expected; the weight is not 
associated with occurrence of evidence (or non-evidence).  A weight of zero indicates that there is no 
association between training points and the evidential theme, or that the evidential theme is not a 
discriminating layer. In order for an evidential theme to be a valid WofE input, it must be a 
discriminating data layer and have statistical significance. 
 
Weights can be calculated using three distinct methods: categorical, cumulative ascending or 
cumulative descending.  The categorical method is used to calculate weights for evidential themes 
where the theme’s values are not ordered (e.g., a geologic map).  The cumulative ascending method is 
used to calculate cumulative weights in a proximity analysis. In this method, areas represented by 
smaller values of an evidential theme have a stronger association with training points, and those 
represented by larger values of an evidential theme have a weaker association with training points. 
Area and number of points are determined cumulatively from the first class to the last class.  This 
method is applicable for themes where the points are mainly associated with the lower values of the 
evidential theme (e.g., confinement thickness).  The cumulative descending method is used to 
calculate the cumulative weights from the last class to the first class in the opposite way of 
cumulative ascending.  This method is applicable for themes where the points are mainly associated 
with the higher values of the evidential theme (e.g., soil permeability). 
 
 

Generalization of Evidential Themes 
 
Generalization of evidential themes follows calculation of weights in the WofE modeling process. 
Themes are generalized in an effort to establish which areas of the evidence share a greater 
association with locations of training points. During calculation of weights for each evidential theme, 
a contrast value is calculated, which is a combination of the positive and negative weights (positive 
weight – negative weight) described above. Contrast is a measure of a theme’s significance in 
predicting the location of training points and helps to determine the threshold or thresholds that 
maximize the spatial association between the evidential theme map pattern and the training point 
theme pattern (Bonham-Carter, 1994).  
 
Confidence of the evidential theme is also calculated for each class, and equals the contrast divided 
by its standard deviation (a student T test) for a given evidential theme. Confidence provides a useful 
measure of significance of the contrast due to the uncertainties of the weights and areas of possible 
missing data (Raines, 1999).  Also, a contrast value that is significant, based on its confidence, 
suggests that an evidential theme is a useful predictor of training points. A confidence value of 0.674 
corresponds to a 75% level of significance (see Table 3). This confidence value was the minimum 
acceptable confidence level selected for the FAVA project evidential themes.  Evidential themes that 
did not meet this test of significance were not included in the FAVA models. Confidence values 
approximately correspond to the statistical levels of significance listed in Table 3.  
 
Following calculation of weights, contrast is used as a threshold to generalize or break evidential 
themes into categories. These breaks delineate which areas of the model study area have more 
association with the training points. The simplest and most common method of categorizing an 
ordered evidential theme is to select the maximum contrast as a threshold to determine where to place 
a binary break in the evidential theme data thereby creating two categories: one with stronger 
association with the training point theme and one with weaker association with the training point 
theme (see Results – FAVA Model Outputs for specific examples).  In some cases, more complex 
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statistical contrast patterns are inherent in the data and may justify the creation of multiple classes in 
the evidential theme data.  To create multiple classes, contrast thresholds must correspond to a 75% 
level of significance.  
 

Table 3. Test values calculated in WofE and their respective studentized T values expressed as 
level of significance in percentages.   

 
Studentized T Value 

(confidence expressed as level of 

significance) 

Test Value 

 

99.5% 2.576 

99% 2.326 

97.5% 1.960 

95% 1.645 

90% 1.282 

80% 0.842 

75% 0.674 

70% 0.542 

60% 0.253 

 
 

Response Theme 
 
Following the generalization of evidential themes, WofE output results are generated and are known 
as response themes. A response theme is an output data layer showing the probability (posterior 
probability) that a unit area contains a training point based on the evidence (evidential theme) 
provided.  Areas of higher posterior probability indicate that an area is more likely to contain a 
training point, whereas areas of lower posterior probability indicate that an area is less likely to 
contain a training point.  For the FAVA project, a response theme can be a probability map that is 
displayed in classes of relative vulnerability based on selected water-quality analytes in training point 
wells.  
 
A response theme table is generated during calculation of each response theme (Table 4) and contains 
a list of evidential themes and their respective weights, contrast and confidence (of the evidential 
theme generalized break).  In general, a positive weight (W1) for an evidential theme indicates areas 
where training points are likely to occur, while a negative weight (W2) for an evidential theme 
indicates areas where training points are not likely to occur.  Contrast is the difference between the 
highest and lowest weights and is a measure of how well an evidential theme predicts training points. 
Contrast is also used to rank the evidential themes. Higher contrast values indicate those evidential 
themes that best predict training point locations and which are more important in the model. For 
example, in the table below, Evidential Theme C was the best predictor among the evidential themes 
because it had the highest contrast and a relatively high confidence. Moreover, because the negative 
weight was stronger than the positive weight, Evidential Theme C was a better predictor of where 



21 

training points were not likely to occur (i.e., low vulnerability) as opposed to where they were likely 
to occur. 
 

Table 4. Sample response theme table generated during calculation of a response theme. W1 
and W2 are weights calculated for the evidential themes, contrast is a combination of the two 
weights, and confidence equals the contrast divided by its standard deviation. Confidence 
provides a useful measure of significance. 

 

Evidential Theme W1 W2 Contrast Confidence 

Evidential Theme A 0.7336 -0.0529 0.7865 2.7967 

Evidential Theme B 0.4794 -1.1573 1.6367 7.0812 

Evidential Theme C 0.2736 -1.5470 1.8206 5.2923 

 
 
Confidence of the evidential theme, as defined above, equals the contrast divided by the standard 
deviation (a student T test) for a given evidential theme.  Confidence can also be calculated for each 
response theme by dividing the theme’s posterior probability by its total uncertainty (standard 
deviation). This calculation produces a confidence map which allows the spatial display of confidence 
for the response theme and an assessment of the quality of the response theme.  
 
 

Conditional Independence 
 
Validity of the posterior probability values is dependent upon the assumption that conditional 
independence is met, which is a calculation performed during execution of WofE.  A conditional 
independence concern exists when the probability of occurrence of one evidential theme influences 
the occurrence of another evidential theme. An example of when conditional independence would fall 
outside this range would be if environmental geology (lithotypes) and geologic map units were used 
as evidential themes in the same model, because both of these datasets share similar characteristics. 
This occurred in the FAVA project during the development of two evidential themes for use in the 
IAS FAVA model (see Results – FAVA Model Outputs – Intermediate Aquifer System for further 
explanation).   
 
The conditional independence ratio is calculated by taking the product of the sum of each unique 
condition’s area (created by the intersection of all input evidence) multiplied by its corresponding 
posterior probability.  This number equals the number of training sites predicted by each model.  A 
ratio of the actual training sites used in the model versus the predicted points from the response theme 
is the conditional independence ratio.  When conditional independence is violated it can cause the 
model to over-predict probabilities where map patterns overlap one another.   Evidential themes were 
considered independent of each other for the FAVA project if the conditional independence value 
calculated was within the range 1.00 ± 0.15 (Raines,  2001).  Values that significantly deviate from 
this range can over inflate the posterior probabilities resulting in unreliable response themes.  A ratio 
of 1.00 indicates that the evidential layers used in the model are conditionally independent.  
Conversely, a ratio lower than 0.85 indicates that there is a conditional independence problem 
(Raines, 2001). 
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Logistic Regression 

 
As stated above, WofE assumes that conditional independence exists among evidential themes.  
When conditional independence problems do arise, yet there is expert-knowledge justification that the 
evidential themes do not produce circular reasoning, there are three solutions that can be employed to 
compensate for this and still produce usable WofE model results: 
 

• Combine the evidential themes of concern into a single theme using one of several methods, 
such as fuzzy logic 

• Present the WofE results (response theme) as a favorability map instead of a probability map 
• Employ use of logistic regression 

 
Utilizing fuzzy logic, one can combine “dependent” evidential themes into a single unitless evidential 
theme, which can then be input into the WofE model, thus representing both of the original evidential 
themes. This technique was employed in the development of the IAS FAVA map for the evidential 
themes IAS overburden and effective karst features (see Results - FAVA Model Output – Intermediate 
Aquifer System for a full discussion).  
 
The second option is simply to recognize the WofE response theme as an output data layer reflecting 
“favorability” rather than probability.  In a favorability map, the response theme pattern alone is used 
to report whether certain areas are more favorable or less favorable to contain a training point than 
others. The actual probability values calculated by WofE are not used because they over-predict the 
response (i.e. aquifer vulnerability).  
 
The third option, logistic regression, is an optional function in the ArcSDM extension that can be 
used to account for the inflated probabilities associated with conditional independence problems.  In 
WofE, the extension breaks down multi-class evidential layers into binary layers.  Logistic regression 
is similar to linear regression; however, because the evidence is reduced into binary themes, the 
response variable can only be divided into two classes, (i.e., presence or absence of training points) 
whereas linear regression can have continuous values ranging from 0 to 1.  WofE model results using 
logistic regression do not differ greatly from standard WofE model results. The main difference is 
that the posterior probabilities of a response theme with conditional independence problems are much 
higher when logistic regression is not used compared to when it is used. Overall, the patterns of the 
response themes case are extremely similar.  In the FAVA project, logistic regression was used in the 
calculation of the response theme for the FAS because conditional independence problems did occur 
in this model (see Results – FAVA Model Outputs– Floridan Aquifer System for more information). 
 
 

Selected Primary Model Technique 
 
Based on a comparison of the advantages and disadvantages of each model considered for application 
in the FAVA project, the WofE modeling technique was selected.  Although WofE is not strong with 
respect to the “easy to explain” criterion, it has several advantages over the other models.  For 
example, WofE is data-driven rather than knowledge-driven, the latter being more subject to experts’ 
preconceptions.  WofE is also the most empirical and the least subjective model of those being 
evaluated for this project.  As noted above, WofE is used to calculate confidence (posterior 
probability divided by total uncertainty), which can be displayed spatially as a confidence map.  
Moreover, as presented in the Discussion section of this report, use of WofE facilitates post-modeling 
validation (see Discussion – Model Validation Techniques).  Other models presented in this section 
were used during the FAVA pilot studies as sources of output comparison as well as initial validation.  
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In addition, some of the modeling techniques, such as Fuzzy Logic, have been used in combination 
with WofE to maximize the accuracy of the WofE modeling results.   
 
As an example, the Wekiva River area was used as a sample study area to apply WofE to generate a 
response theme for the FAS (Figure 4). Four evidential themes were used: soil permeability, 
proximity to karst features, and thickness of confining sediments overlying the FAS, and hydraulic 
head difference between the water table and the FAS. The vertical lines in Figure 4 represent the 
location of training points, which are wells from which water samples exceed an established threshold 
(see Results – Data Coverages – Training Points for a full discussion). The bottom layer in Figure 4 
is the response theme representing relative vulnerability with red areas representing the more 
vulnerable areas. 
 
 

Future Considerations 
 
A fourth modeling technique under consideration is a hybrid between expert-driven fuzzy logic and a 
data-driven neural network.  This technique uses neural network theory as another way of 
determining fuzzy membership rules.  Neural networks “learn” from the associated spatial patterns of 
data layers by using exploratory problem-solving techniques.  These models have the ability to 
address uncertainty and imprecise or incomplete data; however, many consider them “black box” in 
nature and they are difficult to explain and understand (Dixon et. al. 2001).  As such, this modeling 
technique is not applied herein.  The FGS, however, is currently funding research in this area. 
 
 
RESULTS 
 
Introduction  
 
Prior to developing FAVA response themes for assessing relative aquifer system vulnerability, it was 
necessary to identify and develop data coverages to be used as evidential themes. The Results section 
of this report is therefore divided into two main parts: Data Coverages (potential evidential themes), 
and FAVA Model Outputs (response themes).  
 
At the onset of the FAVA project, it became apparent that many good evidential theme candidates 
either did not exist or were not of sufficient detail to serve as model inputs.  For example, although all 
water management districts have at one time generated maps of IAS thickness, no recent statewide 
seamless digital coverage was available. Of the existing maps, significant edge-matching problems 
occurred along district boundaries.  Moreover, for nearly all of the available maps, data on which the 
maps were based were not readily available, and did not exist in a GIS format. As a result, a data 
coverage defining IAS thickness was created using FGS well coring and cuttings data.  Significant 
effort was put forth in the development of other data coverages as well.   
 
A requirement of data coverages which were considered as evidential themes for input into the 
WofE – FAVA model was that they: 
 

• were relevant to hydrogeological processes that affect aquifer vulnerability, 
• were well documented (i.e., GIS metadata), and/or published,  
• covered the entire extent of the aquifer system being modeled,  
• were consistently developed, and  
• were of sufficient accuracy for use in a statewide model. 



24 

 
Figure 4. WofE conceptual model of the FAS. The top four layers are evidential themes and the 
bottom layer is the response theme. Yellow lines represent training points (wells) projected 
throughout the layers. Red regions of the response theme indicate more vulnerable regions of 
the FAS whereas the blue areas are less vulnerable areas.  

 
 

 
"Not everything that counts can be counted, and not everything that  

can be counted counts."  
 

– Albert Einstein 
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As the details of the WofE models for each aquifer system are introduced later in this section, it will 
become apparent that not all of the evidential themes presented herein were utilized in the final 
FAVA response theme development.  There were two primary reasons for this approach.  First, 
although significant effort was required to develop a specific evidential theme, the results of the 
WofE model may have indicated that this evidential theme correlated strongly with another evidential 
theme.  This undesirable correlation contributed to inflation of the posterior probability of the 
response theme.   Second, an evidential theme might have had no association with the training points, 
or the weights may have had no relevance from a hydrogeologic standpoint.  The significance of all 
evidential themes may not generally be known until the weights are calculated using WofE.  Once 
weights were calculated for the FAVA evidential themes, then “added value” of the evidential theme 
was determined.  If the evidential theme was not a discriminatory layer and weights calculated using 
WofE were meaningless or not statistically significant, then it was not included in the final FAVA 
model.  
  
The following data coverages were either used to develop evidential themes, or were themselves 
considered for use as evidential themes in the WofE – FAVA model:  
 

• Soil permeability and drainage 
• Topography 
• Closed topographic depressions 
• Water-table elevation 
• IAS thickness and extent as a confining unit 
• Overburden on the IAS  
• Difference in hydraulic head between the water table and the FAS  
• Geologic map of the State of Florida 
• Environmental geology 

 
 
Data Coverages 
 

Soil Drainage and Permeability 
 
The rate at which ground water moves through soil is an important factor with respect to ground-
water contamination potential.  As such, soils and their hydrologic properties are critical components 
of any aquifer vulnerability analysis, as soil is literally the aquifer system’s first line of defense 
against potential contamination. Two main characteristics of soils were considered for use in the 
WofE – FAVA model: soil drainage and soil permeability.  In more local studies, other soils 
properties, such as bulk density, may be useful evidential themes.  To represent these soil 
characteristics in the FAVA model, continuous statewide digital GIS coverages of soils data were 
developed for the project.  
 
Soils coverages and their corresponding data tables were obtained from two sources: Florida 
Geographic Data Library [FGDL (2003)] and U.S. Department of Agriculture (USDA) NRCS (2003).  
The data were downloaded from these agencies’ respective internet websites (see References for full 
website addresses).  The Soil Survey Geographic database (SSURGO), obtained from both FGDL 
(2003) and NRCS (2003) websites, consists of specific soils data modeled at a scale of 1:24,000. State 
Soil Geographic database (STATSGO), obtained from the FGDL (2003) website, consists of 
generalized soils data modeled at a scale of 1:250,000.  For this project, SSURGO data were preferred 
over the STATSGO because of the more resolute scale at which the soils were modeled.  
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Digital SSURGO data were not available for the entire State at the time of this project.  Counties that 
were still under review by the NRCS included Taylor, Washington, Holmes and Liberty.  
Furthermore, SSURGO data were unavailable for the Everglades area.  For the FAVA project, the 
FGS used the 1:24,000 scale data from published county soil survey books to attribute soil drainage 
data tables for Washington, Holmes and Taylor counties (Huckle et al., 1965; Sullivan, 1975; Watts, 
2000, respectively). Digital STATSGO drainage data were used for Liberty County and the 
Everglades area to complete the soil drainage coverage. Due to time and funding constraints, it was 
not feasible to attribute soil permeability data for the same regions; STATSGO permeability data 
were used for Washington, Holmes, Taylor, and Liberty counties and the Everglades area as a result. 
Areas for which no soils data were available included a number of urban areas.  To compensate, a 
nearest neighbor GIS function was employed, which was used to apply spatial statistics (Euclidean 
distance functions) to predict soils data values for these areas.   
 
 

Soil Drainage 
 
The USDA (2002) defines natural drainage classes as the frequency and duration of wet periods under 
conditions similar to those during which the soil developed. Alteration of the water regime through 
drainage or irrigation is not a consideration unless the alterations have significantly changed the 
morphology of the soil. The classes, as defined by USDA are as follows: 
 

• Excessively drained 
• Somewhat excessively drained 
• Well drained  
• Moderately well drained  
• Somewhat poorly drained  
• Poorly drained  
• Very poorly drained 

 
Soil drainage (Figure 5) was initially used as an evidential theme in the WofE – FAVA model for all 
aquifer systems; however, it was replaced with vertical permeability of soil (hereafter, soil 
permeability) for two important reasons.  First, there were areas mapped as “poor” or “very poor” 
soil-drainage, whereas soil permeability for the same areas was listed as extremely high (e.g., 20 
in/hr).  These soil characteristics may occur in swamps underlain by coarse, sandy soils. Though the 
soils are considered permeable, water remains at or near the surface due to a high water table, causing 
characterization of the drainage as poor. In the SAS FAVA response theme, for example, areas with a 
high water table would appear to be less vulnerable, which could lead to misinterpretation and misuse 
of the FAVA model results. Second, there were occurrences where soil drainage for a specific area 
was listed as “excessively drained,” whereas the soil permeability was listed as very low (e.g., 
1.8 in/hr) for the same area.  This could occur on a hilltop underlain by clay-rich soils. Although 
water would be removed from this soil rapidly due to topographic relief, the soil is not permeable. As 
a result, preliminary results of the FAS FAVA response theme, for example, would appear more 
vulnerable in areas with low-permeable soils, which also contradicted the hydrogeologic basis of the 
model. 
 
 

Soil Permeability 
 
As defined by the USDA (1951), “soil permeability is that quality of the soil that enables it to 
transmit water or air.  It can be measured quantitatively in terms of rate of flow of water through a 
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Figure 5. Soil drainage map of the State of Florida compiled using soil survey books 
[Washington, Holmes, Taylor counties (Huckle et al., 1965; Sullivan, 1975; Watts, 2000)], 
STATSGO data [Liberty County and Everglades area (FGDL 2003)], and SSURGO data 
[remainder of State (FGDL 2003; NRCS 2003)]. 
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unit cross section of saturated soil in unit time.” In STATSGO and SSURGO datasets, rates of 
permeability (vertical) were expressed in inches per hour (in/hr), and each separate soil-horizon layer 
was assigned high and low permeability values.   
 
In the development of a soils statewide data coverage for the FAVA project, average soil permeability 
values were calculated for each soil horizon layer using STATSGO and SSURGO permeability 
values.  Then, based on soil horizon thicknesses, weighted-average permeability values were 
calculated for the entire soil column.  This allowed the generation of a statewide data coverage of 
soils containing a single permeability value per soil polygon. Average weighted soil permeability 
values calculated for the State of Florida range from 0.1 in/hr to 20.0 in/hr (Figure 6).  
 
Permeability data were not available in the STATSGO and SSURGO datasets for some areas 
representing dumps, pits, urban land and water.  To compensate, a nearest neighbor GIS function was 
employed as described above to assign approximated permeability values to these areas. 
 
 

Topography 
 
The development of an accurate digital land surface data coverage was of critical importance with 
regard to generation of evidential themes required for the FAVA project.  These evidential themes 
include karst features, hydrostratigraphic surfaces, and water-table elevation.  USGS 30-meter DEMs 
are available for the entire contiguous United States; however, erroneous elevation values exist 
throughout the USGS DEM for Florida. 
 
In addition, the USGS DEM resolution is too coarse for use as a baseline for development of some 
evidential themes.  Currently, the best-available statewide source for elevation data is the USGS 7.5-
minute quadrangle Topographic Map Series.  These maps existed only in paper form in Florida until 
the 1980’s when the State’s water management districts [excluding Northwest Florida Water 
Management District (NWFWMD)] began digitizing the maps into a GIS format.  This digitizing 
process was the first stage in the development of a statewide digital 1:24,000 scale contour data 
coverage.  Several issues with the data, however, remained, such as a lack of splicing between 
adjoining maps, merged contours along road embankments, and erroneous elevation values for some 
contour lines. 
 
In an effort to address these problems, the FDEP DWRM and the FGS began the significant and time-
consuming task of correcting and refining the digital contours (Rudin et al., 2003).  DWRM scanned 
and digitized all 7.5-minute quadrangle maps in the NWFWMD and implemented a detailed quality 
assurance plan.  The FGS also implemented a detailed quality assurance plan for contour lines, edge-
matched digital maps for the remainder of the State, and improved the locational accuracy for contour 
lines.  The FGS effort involved visually checking digitized contour line values against USGS 7.5-
minute quadrangle topographic maps and developing custom software programs to expedite 
identification of inconsistencies and errors to be corrected. 
 
Once the corrections were made, the FDEP DEM was generated.  Two GIS functions were considered 
in this step: Triangulated Irregular Networks (TIN) and TOPOGRID, a tool in ArcInfo Workstation.  
Each function provided unique benefits to the output surface.  The TIN function’s main drawback 
was that it would not extend elevation values beyond attributed contour lines. In areas of closed 
depressions or hilltops, development of a TIN therefore caused the creation of false plateaus in areas 
which should have rounded hilltops. Further, in areas of valleys and depressions, the TIN function 
caused inaccuracies in drainage systems. The TOPOGRID function can be used to extrapolate 
elevation values beyond attributed contour lines and into valley bottoms; however these 
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Figure 6.  Soil permeability map of the State of Florida compiled using, STATSGO data 
[Washington, Holmes, Taylor and Liberty counties and Everglades area (FGDL 2003)], and 
SSURGO data [remainder of State (FGDL 2003; NRCS 2003)]. 
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extrapolations extended far beyond the designated contour interval creating inaccurately high hilltops 
and false depressions.  Although, TOPOGRID function is typically used to create a more visually 
appealing surface, overall the TIN function returned more accurate elevation values and was used for 
the final generation of the statewide FDEP DEM. Figure 7 displays the statewide FDEP DEM, and 
Figure 8 is a close-up view of the detailed topographic coverage. This represents a significant 
increase in resolution over the USGS DEM; differences between the more resolute FDEP DEM and 
the USGS DEM were noted as exceeding 50 feet in a few cases 
 
 

Closed Topographic Depressions   
 
Ground-water vulnerability is dependent upon the rate at which water reaches the aquifer system.  In 
Florida, sinkholes generally provide preferential pathways for water and contaminants to travel to 
aquifer systems more rapidly from land surface.  As a result, aquifer vulnerability increases in areas 
of relatively dense karst topography.  It is well beyond the scope of this study to map every sinkhole 
or karst-related feature in Florida; however, a surrogate data coverage was available from the FDEP 
DEM that reflects areas with a high population of karst features.  During development and 
enhancement of FDEP DEM, closed hachured topographic depressions were attributed.  For areas 
with multiple encircling hachured contour lines, only the outermost depression was selected.  These 
lines were converted to polygons which were used to create a statewide data coverage of closed 
topographic depressions (Figure 9). This coverage was filtered for each aquifer system and used as 
input into the WofE – FAVA model. These filtering processes are described in Results – FAVA Model 
Outputs for each aquifer system.   
 
Although not all closed topographic depressions are karst features, there is a strong correlation 
between the density of depressions on USGS 7.5-minute quadrangle maps and areas that include 
sinkholes of various types.  In addition to spatial filtering for the IAS and FAS, other enhancements 
to this coverage are yet to be completed.  These enhancements, however, are not expected to 
significantly change the results of the FAVA response themes.  For more details, see Discussion – 
FAVA Maps: Data Limitations and Applications. 
 
 

Water-Table Elevation Map  
 
At present, there are few maps depicting the water-table elevation on a statewide basis.  Most water-
table elevation maps that exist cover relatively small regions (multi-county areas), with the recent 
exception of Sepulveda (2002) who generated a water-table elevation model for much of the Florida 
peninsula using a terrain-following method.  In the present study, Sepulveda’s method was adopted 
and implemented statewide.   
 
 

Water-Table Elevation Development 
 
An initial step toward generation of water-table elevation data coverage (i.e., a depth-to-water 
evidential theme) involved grouping Florida’s physiographic provinces (White, 1970 and Puri and 
Vernon, 1964) into eleven regions (Figure 10).   The basis of this technique was that each major 
physiographic region has unique hydrogeological characteristics that justified the correlation of water 
levels solely within that region 
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Figure 7. Statewide digital elevation model developed using scanned USGS 7.5-minute 
quadrangles. This model of topography is a 15-m grid cell size and was used to develop many 
evidential themes for use in the FAVA project. 
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Figure 8. Detail view of statewide digital elevation model coverage with shaded relief for the 
Alachua, Bradford, and Union county region. Significant topographic features are apparent at 
this scale. 
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Figure 9. Map showing location of closed topographic depressions used to reflect the hydraulic 
role of karst features in the WofE – FAVA model.  The green polygons represent closed 
hachured depressions extracted from the FDEP DEM developed for this project.  



34 

­
50 0 5025 Miles

50 0 5025 Kilometers

Grouped Physiographic Provinces

Region 9
Region 10
Region 11

Region 5
Region 6
Region 7
Region 8

Region 1
Region 2
Region 3
Region 4

 
Figure 10.  Grouped physiographic regions (adapted from White, 1970, and Puri and Vernon, 
1964) used to estimate water-table elevation throughout the State. 
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To estimate the water-table elevation, and thus be able to derive depth to the water table, a multiple 
linear regression equation for each physiographic province was generated based on the following 
datasets: 
 

• Land surface altitude  
• Monitor well water-level data  
• Minimum water-table elevation 
 

Land surface altitude (LSA) was based on the FDEP DEM.  Elevations from 1:100,000 USGS maps 
for water bodies within each physiographic province including streams, lakes and shorelines (Figure 
11) were used to interpolate a minimum water table (MINWT).  Water-level data were compiled from 
the period of record between 1990 and 2000.  A minimum of four water-level readings during this 
period were required for the well data to be included in the dataset.  Sources of this data include 
Florida’s five water management districts, the FDEP, and the USGS. The interactions between these 
components are displayed in the water-table conceptual model (Figure 12). 
 
For those areas where the water table follows land-surface topography, the vertical difference 
between land surface and the minimum water table (LSA – MINWT) is added as a variable to the 
regression (Sepulveda, 2002).   
 
Streams (as arcs) and lakes (as polygons) were obtained from the USGS National Hydrography 
Dataset.  To allow for an accurate interpolation of the MINWT, stream arcs were digitized in the 
downstream direction.  The coastline was given a value of zero and the streams and lakes were 
assigned elevation values based on the FDEP DEM.  The DEM used in the creation of the water-table 
elevation was developed using the ArcInfo program TOPOGRID.  It should be noted that this DEM is 
different than what was used in other FAVA applications, but was still based on the scanned USGS 
7.5-minute quadrangle maps. Streams, lakes, the coastline and contour lines were used in 
TOPOGRID to create a hydrologically-correct grid, meaning that the contour rules were met with 
respect to surface-water flow and drainage.  Where the MINWT, land surface and measured water 
table coincide, the water table was defined as the minimum water table. 
 
Wells were grouped by physiographic region and an average water-level value over the ten-year 
period of record (1990-2000) was calculated for each well. The final water-table elevation surface 
was calculated by applying a multiple linear regression equation to data from within each 
physiographic region.    Values from the MINWT surface were assigned to each monitor well, and the 
wellhead elevation was taken from the DEM.  Multiple linear regressions for each physiographic 
region were calculated based on the following equation from Sepulveda (2002): 
 

WTi = β1 MINWTi  + β2 (LSAi - MINWTi ) 
 
Where:  
WTi    is water-table measurement for the ten-year period of record at well i, in feet 
 
MINWTi is the minimum water table interpolated at well i, in feet 
 
LSAi   is the land surface altitude interpolated at well i, in feet 
 
β1 and β2 are dimensionless regression coefficients of the multiple linear regression. 
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Figure 11. Surface hydrology and wells used to estimate the water-table elevation. 
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Figure 12. Idealized cross-section displaying the components of the terrain-following linear 
regression equation (from Sepulveda, 2002). 

 
Table 5 summarizes the results of the correlations for each physiographic region.  The root-mean-
square residual between the regressed and measured water-table elevation for all physiographic 
regions resulted in a weighted mean of 6.58 feet and a range from 2.60 to 13.91 feet.  The resulting 
water-table elevation surface ranged from zero to 328 feet above mean sea level (Figure 13).  Some 
physiographic regions were predicted better than others; areas with high root-mean-square residuals 
contain provinces that were classified as ridges and uplands. These areas were located in the western 
panhandle and upper-central peninsula of Florida.  A leaky IAS or a high SAS hydraulic conductivity 
may result in a poor correlation between the water table and the land surface in these areas 
(Sepulveda, 2002).  A strong correlation existed between the regressed and measured water table 
throughout the State as is shown in Figure 14 and indicated by the correlation coefficient of 0.98 
 
 

Intermediate Aquifer System Thickness and Extent 
 
According to the Florida Geological Survey’s Special Publication No. 28 (Southeastern Geological 
Society 1986), the intermediate aquifer system/intermediate confining unit consists of highly-variable 
siliciclastic and carbonate deposits that are relatively low-permeability, fine-grained sediments and 
collectively retard the exchange of water between the overlying SAS and the underlying FAS.  The 
term “intermediate confining unit” applies to those areas where this unit is poorly to non-water 
yielding, whereas the term “intermediate aquifer system” applies to those areas where one or more 
low to moderate-yielding aquifers occur.  Special Publication No. 28 is currently under review, and 
the forthcoming version suggests the use of the term “Intermediate Aquifer System” for this entire 
unit and calls for the elimination of the use of “intermediate confining unit.”  Instead, the 
“intermediate confining unit” is considered to be confining beds within the IAS. This newer 
convention currently under review is hereby adopted for the FAVA report. 
 
The IAS helps protect the underlying FAS from potential contamination where it is thick and low in 
permeability; however where the IAS is thin to absent or breached by sinkholes, the vulnerability of 
the FAS to contamination from land surface is greatly increased.  As a result, the IAS extent and 
thickness was mapped and used as an evidential theme for input in the FAS FAVA model. 
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Table 5. Multiple linear regression coefficients for MINWT and difference between DEM and 
MINWT. 

Physiographic 

Region as 

grouped in 

Figure 10 

No.  

wells 

Regression 

coefficient 

of 

MINWT 

(β1) 

Regression 

coefficient of 

difference 

between 

DEM& 

MINWT(β2) 

Root 

mean 

square 

residual 

(ft) 

Value range for 

difference 

between 

regressed& 

measured 

water table  (ft) 

Correlation 

coefficient 

1 88 1.18 0.578 2.94 [-14.76, 7.92] 0.80 

2 143 0.978 0.465 5.30 [-15.29, 19.47] 0.93 

3 22 1.01 0.0325 10.18 [-23.97, 17.01]  0.96 

4 50 0.919 0.301 13.91 [-32.38, 23.23] 0.87 

5 30 0.967 0.603 5.56 [-11.89, 16.85] 0.96 

6 163 0.926 0.314 7.71 [-18.48, 30.70] 0.93 

7 24 1.03 0.431 13.56 [-19.73, 30.58] 0.96 

8 38 0.876 0.417 12.38 [-33.96, 11.24] 0.87 

9 59 1.06 0.772 3.07 [-9.33, 10.86] 0.99 

10 40 0.951 0.895 3.53 [-7.32, 11.48] 0.98 

11 39 1.01 0.345 2.60 [-5.69, 7.85] 0.98 

weighted mean 696     6.58 [-33.96, 30.70]   

 
Though the IAS is primarily a confining unit overlying the FAS, this aquifer system also provides 
usable quantities of ground water in various areas of the State, particularly in the southwest peninsula.  
As a result, the vulnerability of the IAS was modeled for this report, and the extent of where the IAS 
is primarily used as a source of drinking water is defined and discussed further in Results – FAVA 
Model Outputs – Intermediate Aquifer System.  
 
The FAS is confined to varying degrees throughout its extent in the State of Florida. Local 
confinement can exist in the form of thin, discontinuous low-permeability lenses which occur in the 
SAS, or it may be in the form of thick, laterally-extensive, low-permeability beds of the IAS.  Due to 
the statewide scale of the FAVA project and the difficulty in mapping discontinuous SAS basal 
confining layers, the confinement of the FAS was based solely on the presence or absence of laterally 
extensive IAS sediments.  Geologic units (Table 6) comprising the IAS were identified in borehole 
samples, cataloged and interpolated to simulate the IAS surface, which was then used to develop an 
IAS thickness map. 
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Figure 13. Calculated water-table elevation for the State of Florida in feet referenced to mean 
sea level. 
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Figure 14. Regressed and measured water level for all physiographic regions. 

 

Table 6. Geologic units comprising the IAS (Scott, 1988; Schmidt, 1984; Pratt et al., 1996).  

Charlton Member

Tampa Member

Nocatee MemberH
aw

th
or

n
G

ro
up Torreya Formation Penney Farms FormationH
aw

th
or

n 
G

ro
up

Markshead Formation

Chipola Formation
Pensacola Clay
Alum Bluff Group Arcadia Formation

Bone Valley Member

Peace River Formation

Southern PeninsulaNorthern Peninsula

Statenville Formation

Coosawhatchie Formation

H
aw

th
or

n 
G

ro
up

Panhandle
Miccosukee Formation

Intracoastal Formation
Jackson Bluff Formation

 
 
 
The IAS map was developed on a statewide basis and well samples were included only if they 
penetrated or encountered geologic formations as identified in Table 6. This method, while 
appropriate for the FAVA project, may not account for where the FAS is overlain by thin sediments 
that provide some degree of confinement in localized areas that occur beyond the extent of the IAS as 
mapped herein.  This confinement can occur in the form of discontinuous clay lenses in the basal SAS 
or areas of reworked undifferentiated Hawthorn Group sediments that are not well constrained by the 
location of boreholes. In Pasco County for example, Arthur and others, (2005, in preparation) 

Correlation Coefficient = 0.98
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identified areas where local confining sediments overlie and provide some degree of confinement to 
the FAS based on detailed study. Though this is a different extent than that developed for the FAVA 
project, the difference does not affect the FAS FAVA model output. During weights calculation for 
the IAS (see FAVA Model Outputs – Floridan Aquifer System for more information) categories were 
defined by the analysis in which IAS sediments ranging from 0 to 160 feet thick were grouped into 
one generalized category. That is, IAS sediments between 0-160 feet thick have a strong association 
with the training point theme. It is inconsequential to the response theme whether an area is underlain 
by one foot or 20 feet of confining IAS sediments. 
 
Though numerous mapping projects define the thickness and extent of the IAS, most studies focused 
on a local area or region such as a water management district (e.g., Copeland et al., 1991 and 
references therein; Pratt et al., 1996). Overlap problems between regions and variable spatial 
resolutions of adjacent study areas were significant obstacles toward development of a statewide 
digital map of the IAS based on existing publications. Further, most IAS maps that do exist were 
typically created by hand and no digital datasets were available for manipulation (i.e., splicing or 
interpolation). As a result, a continuous, statewide thickness map of the IAS was developed for the 
FAVA project (Wood et al., 2003), building in part on the Southwest Florida Water Management 
District hydrostratigraphic database developed by Arthur et al. (2005, in preparation).  
 
The initial effort was to develop a database of wells from FGS and water management district files for 
which core samples had been collected and described. Formational descriptions based on core 
samples were the most detailed descriptions available, and were therefore chosen over other well 
samples. In several areas of the State, however, no detailed core samples were available so the core 
data were supplemented with descriptions based on well cuttings. The cuttings data, while more 
abundant, were thought to have a greater margin of error with regard to formational depths and 
thicknesses.  These wells from which cores and cuttings were available for study were compiled into 
a database that included locational data and detailed lithologic and stratigraphic information. The 
wells were then plotted in a GIS to begin development of the IAS thickness and extent. A total of 
1,346 wells were evaluated as control points for the map; 643 wells penetrated the tops of both the 
IAS and FAS and 296 wells penetrated the top of the IAS only.  The remaining 407 wells penetrated 
the top of the FAS, however, data for the top of the IAS for these wells was unreliable or unavailable 
(Figure 15). 
 
Through the use of the well data and the State of Florida geologic map (Scott et al., 2001), the spatial 
extent of the IAS was established. In areas where the IAS sediments were thin to absent, the well data 
would sometimes conflict with the geologic map data. In these cases, the well data were preferred 
over the map, as the wells were considered to be more accurate on a local scale than the geologic map 
data due to the scale of the geologic map.  
 
The well database was then used to create a hydrostratigraphic surface for the top of the IAS and the 
top of the FAS (which coincides with the base of the IAS). The surfaces were interpolated using the 
ArcGIS Geostatistical Analyst package. Kriging was the preferred method of interpolation because it 
allows for prediction of a surface using values from known measured locations, and it relies on 
similarity of nearby data points to create a surface much like an inverse distance weighted method. 
Kriging is unique, however, in that it allows cross validation of the results and assessment of 
uncertainty of the predicted surfaces. The surfaces of the IAS and FAS are displayed in Figures 16 
and 17, respectively.  
 
Following creation of the hydrostratigraphic-unit surface models, it was necessary to resolve the 
interpolated surfaces with land-surface elevation. In some localized areas where the IAS is at or near  
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Figure 15. Distribution of wells extracted from FGS and water management district files used 
to define the thickness and extent of the IAS.  A total of 1,346 wells were used; 643 wells 
penetrated the tops of both the IAS and FAS, 296 wells penetrated the top of the IAS only, and 
407 wells penetrated the top of the FAS only. 
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Figure 16. Elevation of the calculated surface of the IAS in feet referenced to mean sea level, 
based on data from 939 wells. The extent defined by Arthur et al. (2005, in preparation) is 
based on a more detailed study.  For the more generalized mapping effort in FAVA, a different 
method was used that was internally consistent on a statewide scale. Due to the different project 
approaches and scales, differences exist between the two IAS extents.   
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Figure 17. Elevation of the calculated surface of the FAS in feet referenced to mean sea level 
based on 1,050 wells. Areas of the FAS in this model which extend more than 1,100 feet below 
mean sea level are restricted to the extreme southwest corner of the panhandle in Escambia 
County where the FAS dips deeply to the southwest. 
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land surface, the IAS surface interpolation may extend above land-surface elevation due to the limited 
amount of control data as compared to the topographic maps on which the FDEP DEM is based. The 
IAS hydrostratigraphic surface was therefore digitally trimmed vertically against the FDEP DEM. 
This resulted in an interpolated IAS surface that did not falsely extend above land surface.  The same 
issue was also encountered when predicting the FAS surface, and therefore, the same process was 
applied. 
 
After the hydrostratigraphic surfaces were developed, calculation of a thickness map was completed 
by carrying out a simple grid subtraction of the IAS hydrostratigraphic surface from the FAS 
hydrostratigraphic surface. It was then necessary to further resolve certain areas (i.e., lake and stream 
bottoms where the IAS is very thin) where the thickness of the IAS was calculated at slightly less 
than zero. The final output was a continuous thickness map of the IAS as displayed in Figure 18, 
which is included as an evidential theme for input into the FAS FAVA model and is employed in the 
development of the SAS extent.  
 
 

Data-Poor Areas for IAS 
 
As mentioned above, well core-sample descriptions were initially preferred in the development of the 
database used to define the thickness and extent of the IAS. In areas for which core samples were 
sparse or unavailable, well cuttings sample descriptions were added to supplement the database. In 
some more remote areas of Florida, however, such as the Everglades, few wells have been drilled, 
and as a result, extremely limited core and cuttings samples were available for these areas.  When 
predicting hydrostratigraphic surfaces based on these wells, prediction errors can be higher for these 
remote areas containing fewer wells.  
 
The accuracy of predicting surfaces is highly dependent upon the regularity and density of data point 
spacing. In areas of densely spaced data points, a predicted surface based on these points will be more 
reliable and have a higher confidence than an area with sparsely spaced data points. In certain areas of 
the IAS thickness map, therefore, where data points were sparse, such as the Everglades, the IAS map 
is much less accurate, and therefore less reliable, than in areas of more highly concentrated data 
points. In general, the vertical resolution of the IAS thickness is approximately 30 feet. 
 
 

Intermediate Aquifer System Overburden 
 
Where the IAS is a major regional and productive aquifer system in southwest Florida (Figure 19), 
overlying sediments form an important protective layer. The materials include undifferentiated sands 
and clays, shelly sediments of Plio-Pleistocene age, including the uppermost permeable sediments of 
the Tamiami Formation.  To calculate the thickness of sediments overlying the IAS, the surface of the 
IAS was subtracted from the FDEP DEM.  This grid was clipped to the extent of the IAS and used as 
input into the IAS FAVA model. The thickness of the overburden ranged from a few feet in the 
northwestern area of the IAS extent to 429 feet along the eastern edge in Highlands County. The 
thickest part is limited to a small area and is believed to be the result of a deep trough or depression in 
the surface of the IAS overlain by thick sandy deposits of the southern end of the Lake Wales Ridge. 
This observation is reflected in the well core and cuttings descriptions. In general the IAS overburden 
thickens toward the south.  Figure 19 displays the thickness map of the IAS overburden. Refer to 
Results – FAVA Model Output – Intermediate Aquifer System – Study Area and Extent for more detail 
on the delineation of the IAS extent as a source of ground water for purposes of this study. 
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Figure 18. Thickness and extent of the IAS in feet. The red-lined pattern and the stippled IAS 
extent from Arthur, et al. (2005; in preparation) indicates areas that may be under local 
confining conditions, but were not mapped for this project.  The omission of these locally 
confined areas did not impact final FAVA model results. 
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Figure 19. Thickness of sediments overlying the IAS where it forms a major regional aquifer 
system in southwestern Florida. This evidential theme was calculated by subtracting land 
surface (FDEP DEM) from the top of FAS surface developed as part of the IAS thickness map.   
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Hydraulic Head Difference between the Water Table and Floridan Aquifer System 
 
The hydraulic head difference between the uppermost water-level and FAS is an important factor for 
use in the prediction of vulnerability of the FAS.  In areas where the water-table surface is greater 
(higher in elevation) than the FAS potentiometric surface, the direction of ground-water flow is 
assumed to be downward, thereby potentially increasing the contamination potential in the underlying 
FAS, depending on the thickness of the IAS.  An evidential theme depicting the hydraulic head 
difference between the water-table surface and the FAS potentiometric surface was developed for 
incorporation into the FAS FAVA model (Figure 20). 
 
Hydraulic head difference was calculated by subtracting the FAS predevelopment potentiometric 
surface (Johnston, et al., 1980) from the water-table surface described previously (see Results – Data 
Layers – Water-Table Elevation).  Areas where the head difference is a positive value indicates where 
the FAS is receiving recharge, whereas areas with a negative value indicate the FAS has the potential 
to discharge to the overlying aquifer system (Figure 21).   
 
The predevelopment potentiometric surface has poor resolution due to limited data; however, its use 
in creating a hydraulic head difference evidential theme was more appropriate for use in the FAVA 
project than any of the recent potentiometric surface maps.  The more recent maps include cones of 
depression created by major well fields, which in some areas result in potentiometric levels as much 
as 180 feet lower than predevelopment levels.  If current potentiometric surface maps were used in 
the calculation of a hydraulic head difference evidential theme, the resulting evidential theme would 
inaccurately show major well fields as areas of high potential recharge for the FAS, which may not be 
true due to the presence of thick (over 400 feet) IAS sediments. Further, this has the affect of biasing 
this evidential theme in those areas and is less reflective of the natural system being evaluated in the 
FAVA project. 
 
 

Geologic Map 
 
The geologic map of the State of Florida (Scott et al., 2001) was considered as an evidential theme for 
the FAVA models (Figure 22).  To a great extent, Florida’s geologic units are overlain by a thin cover 
of Pliocene and younger, undifferentiated sediments. To maximize detail, the geologic map identifies 
the uppermost recognizable lithostratigraphic units occurring within 20 feet of land surface.  
 
Attributed polygons from the geologic map were used as input into each model, and weights of 
evidence were calculated; however, the geologic map data were ultimately omitted from the final 
FAVA analyses for a number of reasons. For example, in the FAS FAVA model, Undifferentiated 
Quaternary (Qu) sediments overlie a wide variety of other sediments ranging from carbonates to thick 
sequences of low permeability siliciclastics of the IAS. Correlations calculated using WofE between 
the distribution of training points and the total area of Qu sediment distribution were therefore not of 
meaningful value to the model. 
 
Use of the geologic map was inappropriate for the SAS FAVA model as well because the top of the 
SAS can occur several feet above the uppermost recognizable lithostratigraphic unit (within 20 feet of 
land surface). As a result, and due to the design of the geologic map, it would poorly reflect SAS 
hydrogeological characteristics in many areas. 
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Figure 20. Hydraulic head difference between the water-table surface and the FAS 
potentiometric surface in feet (i.e., hydraulic head difference = water table – FAS).  Negative 
values indicated where the FAS potentiometric surface exceeds the overlying water-table 
elevation.  
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Figure 21. Map showing relative areas of potential recharge and discharge based on calculation 
of subtracting the water table from the FAS potentiometric surface. 



51 

 
Figure 22. Geologic Map of the State of Florida (Scott et al., 2001) originally published at a 
scale of 1:750,000.  
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The geologic map was also applied to the IAS FAVA model; however, because of the limited 
geographic extent of the IAS model, few geologic units were represented. Moreover, weights 
calculated for the IAS for the geologic map units were not usable because they did not meet the test of 
significance for the FAVA project (i.e., none of the calculated confidence values reached the 
minimum acceptable level for FAVA of 0.674, or 75%), and the weights were counterintuitive with 
regard to hydrogeologic processes and vulnerability.  
 

Environmental Geology 
 
The Environmental Geology Map Series (Schmidt, 1978a; Schmidt, 1978b; Scott, 1978a; Scott, 
1978b; Knapp, 1978a; Knapp, 1978b; Schmidt, 1979; Scott, 1979; Lane et al., 1980; Knapp, 1980; 
Lane, 1980; Deuerling, 1981; Lane, 1981) was created to provide a series of lithology and sediment-
type reference maps for professionals working in fields such as waste disposal, water resources 
management, land management, highway construction, geologic hazards, soils mapping, mining, and 
reclamation.  
 
Environmental geology maps represent the dominant geologic material present just below the soil 
horizon (within 10 feet of land surface). These maps were intended to be used by professionals who 
do not necessarily have specific training in the field of geology yet require knowledge of the 
distribution and composition of geologic material. The maps are therefore more simplified than the 
geologic map of the State of Florida (Scott et al., 2001). 
 
The Environmental Geology Map Series was compiled into a GIS layer as a continuous statewide 
coverage (Figure 23). During model sensitivity analyses, this statewide data coverage was evaluated 
as a potential evidential theme in the FAVA models for the three major aquifer systems. Ultimately, 
this data coverage was not included in the final FAVA model input primarily because common rock 
types were not necessarily grouped based on their hydrogeologic properties. As such, calculated 
weights return results indicating that the data layer provides no significant contribution to the FAVA 
response themes.  On the other hand, the environmental geology layer was useful in the travel time 
model, which was used during the pilot phases of the FAVA project as a validation tool. 
 

Training Points   
 
In WofE models, training points are a set of locations reflecting the presence of an analyte used to 
calculate weights for each evidential theme, one weight per class, using the overlap relationships 
between points and the various classes (Raines, 1999).  For the FAVA project, the training point wells 
used in the WofE – FAVA model were obtained from the FDEP background water quality monitoring 
network (Figure 24).  The statewide network, which consisted of over 2,600 wells, was designed to 
monitor the ambient ground-water quality of Florida’s three major aquifer systems.  The well 
locations were selected to avoid association with any particular land use or uses. Ground-water 
quality data for the monitoring wells were obtained from the FDEP Generalized Water Information 
System (GWIS) database provided by the Ambient Monitoring Section at FDEP.  This database 
provided ground-water quality data through August, 1999.   
 
Several water-quality analytes were measured for these wells, however, only a few have geochemical 
characteristics that yielded information regarding vulnerability and/or recharge rates of Florida’s 
aquifer systems.  Moreover, it was required for this project that any analytes selected for the training 
point data set must have a large number of wells in all aquifers that could support meaningful 
statistical analyses.  Further, ideal water-quality analytes should generally have been considered 
ubiquitous at land surface, have very low background or native ground-water concentrations, and be 
geochemically conservative (i.e., easily transported, and not absorbed or adsorbed by aquifer media). 
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Figure 23. Environmental Geology map of Florida (see text for references from which map was 
compiled). Polygons represent the dominant geologic material present just below the soil 
horizon (within 10 feet of land surface). 
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Figure 24. Location of wells and their respective hydrogeologic unit in the FDEP background 
water quality monitoring network. These wells were used to develop the training points themes 
for input into the WofE – FAVA models. 
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The water-quality analytes selected for the FAVA training data set included nitrogen and oxygen.  
Background levels of nitrogen and oxygen in Florida’s aquifer systems are naturally low where the 
aquifer system is not affected by activities at land surface.  Therefore, where dissolved nitrogen, 
ammonia and dissolved oxygen occur at concentrations significantly above background levels in an 
aquifer system, one can generally assume a relatively greater hydrologic connection between land-
surface activities and ground water.  Other analytes, such as tritium provide an indication of the age 
of water recharging the aquifers, and can provide an estimate of relative recharge – an approximate 
method of assessing vulnerability.  These analytes, however, were not in abundance in the water 
quality database and would not provide adequate statewide coverage and representation of the many 
hydrogeologic settings in Florida.  As a result, ammonium, nitrogen, and dissolved oxygen, were 
selected to develop training sets for WofE – FAVA models. 
 
It is acknowledged that factors exist that may affect the concentration of these model training 
analytes, such as land use and the potential for dilution due to rainfall events prior to sample 
collection.  These factors, however, were addressed to some degree by: 1) use of, where possible, 
median values of multiple analyses of these analytes to comprise the training point data set in order to 
reduce the possible influence of anomalous values, 2) use of statistical methods, described below, to 
remove anomalies that may have resulted from these factors, and 3) assessment of potential land-use 
bias during model output validation. 
 
Water-quality measurements that included nitrate-plus-nitrite dissolved as nitrogen (NO3

¯ + NO2
¯ 

dissolved as N; hereafter, dissolved nitrogen), ammonia (NH3
¯) , and dissolved oxygen from January 

1991 through August 1999 were extracted from the FDEP database for use in development of training 
point themes for each aquifer system model.  Measurements prior to 1991 were excluded due to the 
lack of consistent quality assurance. The background water quality monitoring network program was 
reorganized into another program (STATUS Network Program) in 2000 and due to the development 
of a new computer system, data from the STATUS network were not available for later dates.  Future 
calculations of the FAVA response themes will be able to benefit from water quality analyses in the 
STATUS Network. 
 
For the SAS and IAS FAVA model output, dissolved nitrogen and ammonia data were used to 
develop training point themes, whereas, for the FAS model output, only dissolved nitrogen was used 
(see Results – FAVA Model Outputs for each aquifer for further details and justification).  Dissolved 
oxygen data were used to develop training point themes for validation of the FAVA models.  
 
Many of the wells extracted from the GWIS database have multiple water-quality measurements 
taken over time for the analytes of concern. To develop training point themes for each aquifer system 
with a single analyte value per well, the median value of the multiple analyses was chosen to 
represent the well.  An “upper fence” was calculated for the set of median values for each aquifer 
system to identify and omit outlier wells.  This conservative approach was taken based on the 
possibility that outliers represented either erroneous water-quality measurements or were associated 
with nitrogen loading from a particular land use rather than representing general native ground-water 
quality. 
 
The remaining sets of wells were further statistically analyzed to establish a 75th percentile value for 
each aquifer system’s dataset. Wells with values of the analytes of concern occurring above the 75th 
percentile median value were selected to be the training point themes for input into the WofE model. 
These points represent the upper 25th percentile of wells with detected levels of analytes of concern. 
All aquifer systems in Florida are vulnerable to contamination to some degree throughout their 
extents and therefore some level of interconnectedness exists between land surface and all aquifer 
systems. 
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It is important to note that the occurrence of a training point in an area does not correspond to a site of 
aquifer system contamination. Rather, a training point is an indication of the degree of 
interconnectedness between the land surface and the top of the aquifer system in question. By 
choosing the upper 25th percentile for this report, we identified those areas where the connection is 
greatest, and therefore, are most vulnerable to contamination from land surface based on analytes that 
are considered to be ubiquitous in the Florida landscape. This method is also significant because 
instead of choosing a drinking water standard for a particular analyte threshold, the upper 25th 
percentile was used, ensuring that with any set of water quality data, a training point theme can be 
developed. The FAVA models are therefore models of vulnerability and not contamination. 
 
 
FAVA Model Outputs 
 

Introduction 
 
As described in the Introduction – Background – Models Considered section, Weights of Evidence 
(WofE) was selected as the model on which to base the FAVA maps.  Use of WofE requires the 
combination of diverse spatial data which are used to describe and analyze interactions and generate 
predictive models (Raines et al., 2000).  A primary benefit of applying WofE to the FAVA project is 
that it is data-driven, rather than expert-driven.  The data that “drive” or “train” the model consist of 
known occurrences of analytes that reflect relative aquifer vulnerability, such as levels of dissolved 
nitrogen and/or ammonia that exceed native ground-water conditions in wells.  These wells are the 
training points used to calculate relative weights for laterally continuous input data layers (evidential 
themes), which are then combined to yield a response theme (Raines, 1999). 
 
When reviewing the model results, it is important to note that all aquifers, to some degree, are 
vulnerable to contamination from land surface.  The model results simply identify those areas within 
the study area that are more vulnerable or less vulnerable based on the evidential themes and training 
points used in the model.  FAVA model results for Florida’s three primary aquifer systems using 
WofE are broken down by aquifer system and discussed in the following sections.  Each section 
describes the model extent (study area), training point selection, evidential themes, and response 
theme for that particular aquifer system.  Although the details of the WofE modeling technique were 
described in the Introduction, additional general comments regarding how WofE was applied to the 
FAVA project are presented below.    
 
 

FAVA Evidential Themes 
 
As described in the Introduction – Approach – Models Considered of this section of the report, 
several evidential themes were considered for use in the WofE – FAVA model.  Themes were 
generalized in an effort to establish which areas of the evidence shared a greater association with 
locations of training points. During calculation of weights for each evidential theme used in the 
FAVA project, a contrast value was calculated for each class of the theme by combining the positive 
and negative weights (positive weight – negative weight).  Contrast is a measure of a theme’s 
significance in predicting the location of training points and helps to determine the threshold or 
thresholds that maximize the spatial association between the evidential theme map pattern and the 
training point theme pattern (Bonham-Carter, 1994).  
 
Confidence of the evidential theme equals the contrast divided by the standard deviation (a student T 
test) for a given evidential theme and provides a useful measure of significance of the contrast due to 
the uncertainties of the weights and areas of possible missing data (Raines, 1999).  A confidence 
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value of 0.674, which corresponds to a 75% level of significance, was the minimum acceptable level 
selected for the FAVA project evidential themes.  Evidential themes that did not meet this test of 
significance were not included in the FAVA models.  Confidence values approximately correspond to 
the statistical levels of significance listed in Table 7. 
 
Contrast values were used to determine where to sub-divide evidential themes into generalized 
categories. The most common method of categorizing an ordered evidential theme was to select the 
maximum contrast as a threshold value to create a binary generalized evidential theme.  For most 
evidential themes used for the FAVA project, this binary break was typically defined by the WofE 
analysis thereby creating two spatial categories: one with stronger association with the training point 
theme and one with weaker association with the training point theme.  In some instances, more 
complex statistical contrast patterns were calculated and the creation of multiple classes in the 
evidential theme data was justified by the analysis. As mentioned in the Introduction, to create 
multiple classes, contrast thresholds chosen to create multi-class themes must also correspond to a 
level of significance, or confidence, greater than or equal to 0.674 
 
Iterative model runs were completed to perform sensitivity analyses in relation to these evidential 
themes (for more information on model validation and sensitivity analyses see Discussion – Model 
Validation and Sensitivity Analysis).  Given their importance in the overall process of developing 
FAVA maps, they are all described in this report; however, not all were applied within each aquifer 
system model.  Evidential themes ultimately not used as WofE model inputs for two main reasons: 
they did not meet the test of significance for the FAVA project, or the resulting weights were 
counterintuitive with regard to hydrogeologic processes and vulnerability.  

 

Table 7. Test values calculated in WofE and their respective studentized T values expressed as 
level of significance in percentages.   

 
Studentized T Value 

(confidence expressed as level of 

significance) 

Test Value 

 

99.5% 2.576 

99% 2.326 

97.5% 1.960 

95% 1.645 

90% 1.282 

80% 0.842 

75% 0.674 

70% 0.542 

60% 0.253 
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FAVA Response Themes 
 
The FAVA response themes are output maps calculated using WofE for each aquifer system showing 
the probability that a unit area would be vulnerable to contamination from land surface based on the 
evidence provided.  The response themes are portrayed as relative vulnerability maps and were 
classified into probability classes which were selected based on the inflections in charts in which 
cumulative study area was plotted against the posterior probability for each model.   The breaks for 
these vulnerability zones were selected where a notable stepwise increase in posterior probability 
relative to cumulative area occurred. The more vulnerable areas corresponded with higher posterior 
probabilities, while the less vulnerable areas were associated with lower posterior probabilities. In 
essence, a higher posterior probability indicated that an area was more likely to contain a training 
point, or more likely to be contaminated, and therefore more vulnerable to contamination from land 
surface. 
 
Further, implications of the Delphi study results, as well as feedback from the FAVA TAC suggest 
that too many (or too few) classes of relative vulnerability may complicate application of the FAVA 
model results.  As a result, the posterior probabilities were divided into three classes:   
 

• less vulnerable,  
• vulnerable, and  
• more vulnerable.  

 
These three class designations were used in the model results of the SAS, IAS, and FAS.  The color 
codes and class designations were kept the same throughout the models for simplification.  They 
should not be assumed, though, to mean the same thing between model results for all three aquifer 
systems. Each response theme was unique to each aquifer system and was dependent on the evidential 
theme and training point data used for input for that model only.  
 
Typically, the break between the vulnerable and more vulnerable zone corresponded to the prior 
probability value for each model.  The three sections that follow discuss the model results for the 
SAS, IAS, and FAS, and the response themes for each aquifer system are presented at the end of each 
section at a scale of 1:4,800,000.  The response themes are also included in Plates 1, 2, and 3 at a 
scale of 1:1,267,200.  The Plates allow the display of more detail in the response themes and also 
include information about training points and evidential themes.  These three-class vulnerability maps 
are provided as a potential resource for decision making, development of rules, or policies regarding 
environmental conservation, protection, growth management and planning. 
 
As mentioned above, all aquifers are vulnerable to contamination to some degree; i.e., no aquifer can 
be considered to be truly invulnerable to contamination. It follows then that the probability that an 
aquifer system is vulnerable to contamination can never be equal to zero because this would indicate 
that it has no probability of being contaminated (e.g., containing a training point). This was supported 
by the model results; the posterior probability values for none of the models was zero, indicating that 
all the aquifer systems in Florida are to some degree, vulnerable to contamination.   
 
An assumption is made when using WofE that there is conditional independence between the layers 
used as predictors.  Conditional independence is violated when the presence of one evidential theme 
influences the probability of another evidential theme. The validity of a posterior probability value is 
dependent upon the degree of conditional independence calculated for each model.  If an evidential 
theme does not significantly affect the probability of another evidential theme then conditional 
independence is satisfied.  Evidential themes are considered independent of each other if the 
conditional independence value is around 1.00.  For the FAVA project, appropriate conditional 
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independence values fell within the range of 1.00 ± 0.15 (Raines, 2001).  Values outside of this range 
could have over inflated the posterior probability values and yielded misleading results.  In this study, 
the only model that violated the assumption of conditional independence was the FAS FAVA model.  
As a result, the FAS FAVA model response theme was calculated using logistic regression (see 
Introduction – Approach – Models Considered for a detailed discussion of logistic regression).  
 
A response theme table was generated for each FAVA response theme.  This table displays the 
evidential themes used, weights calculated for those evidential themes, as well as the theme contrast 
and confidence of the evidential themes.  Refer to Introduction – Approach – Models Considered – 
Weights of Evidence Model for an explanation of the components listed in the response theme table. 
 
 

Confidence Maps 
 
As mentioned in the Introduction – Approach – Models Considered – Weights of Evidence Model, 
there are two types of confidence used on the WofE model. Confidence of the evidential theme, as 
reported in the response theme tables, equals the contrast divided by the standard deviation for a 
given evidential theme. Confidence maps were also generated for the response themes by dividing a 
response theme’s posterior probability distribution by the total uncertainty for the model. Confidence 
maps help the end-user to assess the certainty of each FAVA response theme.  Areas with a high 
posterior probability tend to have higher confidence values and therefore have a higher level of 
certainty with respect to predicting aquifer vulnerability.  Areas with missing data raise the total 
uncertainty, which in turn lowers the confidence value.  Confidence maps are displayed with the 
response theme for each aquifer system below. 
 
 

Surficial Aquifer System 
 

Study Area and Extent 
 
The Surficial Aquifer System (SAS) is the permeable hydrostratigraphic unit in Florida contiguous 
with land surface that comprises principally unconsolidated siliciclastic deposits, and to a lesser 
extent, carbonate rocks.  The lower limit of the SAS coincides with less permeable sediments of the 
top of the IAS (Southeastern Geological Society, 1986).  The SAS occurs throughout much of the 
State and is used extensively in the western panhandle (Sand and Gravel Aquifer) and the 
southeastern peninsula (Biscayne Aquifer) as a principal source of drinking water.   
 
The preliminary extent (i.e., WofE study area) of the SAS for the FAVA project was based on the 
extent of the IAS.  Modifications of this preliminary extent were based on the distribution of 
Miocene-Pliocene clay-rich sediments as mapped by Scott et al. (2001). In areas where sediments of 
the IAS were not mapped on a regional scale, the SAS was not mapped for this project (see Results – 
Data Coverages – Intermediate Aquifer System Thickness for additional information).  Further 
refinement of the SAS extent was accomplished by omitting areas where laterally continuous SAS 
sediments were calculated at less than ten feet thick and where IAS sediments were at or near land 
surface. In some instances, SAS sediments greater than ten feet in thickness were omitted from the 
extent because they represented isolated, discontinuous, local packages of sediment which do not 
form part of a major regional aquifer system.  In some of these areas, hydraulic heads in the FAS and 
surficial sediments differ, justifying a local water-table aquifer in the areas; however, these local 
occurrences are generally discontinuous. Given the statewide scale of the FAVA project, attempting 
to map and model these isolated areas was beyond the scope of this project.  Maps showing the SAS 
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extent in this report reflect only areas where the SAS is present in a laterally continuous and regional 
extent. 
 
For modeling purposes, the extent of the SAS was further revised to exclude all areas covered by both 
permanent and seasonal wetlands (Figure 25).  These wetlands were identified using the National 
Wetlands Inventory (NWI) database (US Fish and Wildlife Service, 1988-1993).  Wetlands were 
omitted from the SAS extent because they were poorly represented by training points, i.e., few wells 
existed in wetland areas.  During sensitivity analyses, model outputs for the SAS that included 
wetlands yielded misleading evidential theme weights and poorly predicted vulnerability of the SAS 
in wetland areas. It is important to note that this NWI differs significantly from wetlands identified in 
land use data used later in this report to compare land use to relative vulnerability.  
 
 

Training Points 
 
There were a total of 916 wells in the FDEP background water quality monitoring network that were 
completed in the SAS.  Of these wells, 442 were measured during the same sampling event for both 
ammonia and dissolved nitrogen concentrations.  This was a criterion for selecting SAS training point 
wells. The measured values were then combined (dissolved nitrogen plus ammonia; hereafter referred 
to as “total dissolved nitrogen”) to provide a single analyte value per well on which statistical 
analyses could be completed.  
 
Ammonia concentrations were incorporated into the SAS training point data set to account for areas 
of the State with a high water table, primarily in the southern part of the study area.  In these areas, 
nitrogen in the form of ammonia can be more prevalent where the high water table and organic soils 
create a reducing environment.  If ammonia was not used in conjunction with dissolved nitrogen, the 
SAS model results were biased toward areas with a thick vadose zone (i.e., Sand and Gravel Aquifer).   
 
Using statistical methods described in Results – Data Coverages –Training Points, 52 wells were 
identified as outliers and subsequently removed from the dataset leaving 390 wells for additional 
analysis.  Further statistical analysis returned a 75th percentile combined median value for a total 
dissolved nitrogen concentration of 0.619 milligrams per liter (mg/L).  There were 92 wells occurring 
in the dataset with a total dissolved nitrogen value greater than 0.619 mg/L. These 92 wells were used 
to create the training point theme for input into the SAS FAVA model. The resulting prior probability 
was calculated at 0.0014, which represents the chance that a training point will occupy any given unit 
area within the study area, independent of any evidential theme data. The distribution of these wells is 
displayed in Figure 26.  
 
 

Generalization of Evidential Themes 
 
Several evidential themes were considered for input into the SAS FAVA model: 
 

• Soil drainage 
• Soil permeability 
• Closed topographic depressions 
• Depth-to-water 
• Environmental geology map 
• Geologic map of the State of Florida 
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Figure 25. Extent of the SAS where it forms a major regional aquifer system throughout 
Florida. Wetlands and large water bodies have been omitted from this study area based on the 
National Wetlands Inventory to avoid biasing the model. 
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Figure 26. Map showing location and distribution of the 92 training points consisting of wells 
completed in the SAS, which were simultaneously measured for both ammonia and dissolved 
nitrogen. These wells had a measured total dissolved nitrogen value greater than 0.619 mg/L. 
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Ultimately, three of the above evidential themes were used for the SAS model: depth-to-water, soil 
permeability and closed topographic depressions.  The other evidential themes were not used because 
they either did not meet the test of significance for the FAVA project, or the resulting weights were 
counterintuitive with regard to hydrogeologic processes and vulnerability. For a full discussion on the 
limitations of evidential themes refer to Results – Data Coverages.  Modifications were made to the 
evidential themes to calculate weights and then generalize the evidential themes for input into the 
SAS FAVA models. The modifications and generalizations are discussed below.  

 

Soil Permeability 
 
Soil permeability is a measure of the rate at which water travels through the upper vadose zone.  
Areas with high soil permeability values are normally associated with higher aquifer vulnerability.  
Weights were therefore calculated for soil permeability using the cumulative descending method.    
The highest contrast (see Results – FAVA Model Outputs – FAVA Evidential Themes and Introduction 
– Approach – Models Considered – Weights of Evidence Model for more information on use of 
contrast to generalize evidential themes) of any class was calculated at 6.3 in/hr (Figure 27).  
 
The calculated weights did not justify the selection of a multi-class theme because neither contrast nor 
confidence calculated for other classes was statistically significant enough to support delineation of 
more breaks. As defined by the analysis of this evidential theme, the most appropriate break in the 
soil permeability evidential theme was at 6.3 in/hr creating a binary generalized theme for input into 
the SAS FAVA model. In other words, this analysis indicated that areas underlain by soils with 
permeability values ranging from 0.1 to 6.3 in/hr were, based on the location of training points, 
associated with areas of lower vulnerability. Conversely, the analysis indicated that areas underlain by 
soils with permeability values ranging from 6.3 to 20.0 in/hr were, based on the location of training 
points, associated with areas of higher vulnerability. The generalized theme is displayed in Figure 28. 
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Figure 27. Cumulative-descending soil permeability values (in/hr) plotted against contrast 
values calculated using WofE. The highest cumulative contrast value was calculated at 6.3 in/hr, 
which indicated that areas of the evidential theme with permeabilities higher than this value are 
the best predictor of training points.  
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Figure 28. Map showing generalization of soil permeability evidential theme. Based on 
calculated weights, a binary generalization with a break at a value of 6.3 in/hr was defined by 
the analysis.  Based on the location of training points, blue areas were associated with areas of 
lower vulnerability, while red areas were associated with areas of higher vulnerability.  
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Closed Topographic Depressions 
 
In the FAVA project, closed topographic depressions were typically prominent in areas of high karst 
feature density.  Water generally collects and recharges the underlying aquifers beneath closed 
topographic depressions.  Because areas nearer to a karst feature are considered more vulnerable to 
contamination than areas further away, a proximity analysis was completed for the closed topographic 
depressions theme by creating a 2,700-m buffer zone around each topographic depression within 
which equally-spaced 90-m intervals were delineated.  The outermost interval contained all areas of 
the SAS extent which lie 2,700 m or further from a topographic depression.  Based on spatial 
analysis, all training points occurred within 2,700 m from a closed topographic depression, thereby 
lending support to that radial distance as a lateral threshold for the delineation of intervals within the 
buffer zone. 
 
As stated above, areas closer to a closed topographic depression are normally associated with higher 
aquifer vulnerability, and, as a result, weights were calculated for the closed topographic depressions 
evidential theme using the cumulative ascending method.  The highest contrast of any class was 
calculated at a distance of 2,340 m from a depression.  The calculated weights did not justify the 
selection of a multi-class theme because neither contrast nor confidence calculated for the other 
classes supported delineation of more breaks. As defined by the analysis of this evidential theme, the 
most appropriate break in the closed topographic depressions evidential theme was at 2,340 m 
creating a binary generalized theme for input into the SAS FAVA model.  In other words, this 
analysis indicated that areas beyond 2,340 m of a closed topographic depression were, based on the 
location of training points, associated with areas of lower vulnerability. Conversely, the analysis 
indicated that areas within 2,340 m of a closed topographic depression were, based on the location of 
training points, associated with areas of higher vulnerability. The generalized theme is displayed in 
Figure 29. 
 
 

Depth-to-Water 
 
The depth-to-water evidential theme used in the SAS FAVA model was calculated by subtracting the 
water-table elevation values from the FDEP DEM values.  Areas where the depth-to-water was equal 
to zero occurred over a large part of the SAS study area and, for the most part, coincided with 
wetlands and water bodies.  These areas were considered surface water and for the purpose of 
modeling were converted into “missing data” values.  These areas did not directly correspond to the 
mapped NWI database because depth-to-water values were based on interpolated values calculated 
from water-table elevation.  It is important to note that designation of these areas as “missing data” 
was done for this evidential theme only and did not change the model study area that was based on 
the NWI database and identified in Figure 25. Weights were still calculated for this evidential theme, 
but “missing data” areas were assigned a weight of zero. In addition, during preliminary model 
iterations, it was determined that if areas calculated at a depth-to-water value of zero were included, 
calculated weights and their associated confidence values did not meet the test of significance for the 
FAVA project. The FAVA approach was not designed to address vulnerability of surface water 
bodies, all of which are vulnerable to contamination.  The depth-to-water evidential theme values 
ranged from one to 220 ft below land surface, and, for over 50% of the study area, were less than 
eight feet deep. 
 
Aquifer vulnerability for the SAS is normally associated with areas of high-water table (i.e., shallow 
depth-to-water). A pattern identifying where the water table is closest to land surface would therefore 
be a good predictor of training points.  As a result, weights were calculated for depth-to-water using 
the cumulative ascending method of the WofE analytical technique. The highest contrast calculated
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Figure 29. Map showing generalization of closed topographic depressions evidential theme. 
Based on calculated weights, a binary generalization with a break at a distance of 2,340 m was 
defined by the analysis.  Based on the location of training points, blue areas were associated 
with areas of lower vulnerability, while red areas were associated with areas of higher 
vulnerability. 
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for any class was calculated at a depth-to-water value of 48 feet. The calculated weights did not 
justify the selection of a multi-class theme because neither contrast nor confidence calculated for the 
other classes supported delineation of more breaks.  As defined by the analysis, the most appropriate 
break in the depth-to-water evidential theme equals 48 feet, thus creating a binary generalized theme 
for input into the SAS FAVA model.  In other words, this analysis indicated that areas in which the 
depth-to-water exceed 48 ft were, based on the location of training points, associated with areas of 
lower vulnerability. Conversely, the analysis indicated that areas in which the depth to water is less 
than 48 ft were, based on the location of training points, associated with areas of higher vulnerability. 
The generalized theme is displayed in Figure 30 
 

Response Theme 
 
Using the three evidential themes discussed above, a response theme (Figure 31) was generated 
showing the posterior probability that a unit area contained a training point based on the evidential 
themes used as input.  The posterior probabilities of the response theme ranged from 0.000119 to 
0.001870 across the model domain. Plotting posterior probability against cumulative area as a 
percentage (Figure 32) allowed the delineation of class breaks for display of vulnerability zones in the 
final response theme.  The breaks for these vulnerability zones were selected where a notable 
stepwise increase in posterior probability relating to cumulative area occurred. The first break, which 
delineated the less vulnerable zone from the vulnerable zone, occurred at a posterior probability value 
of 0.00047.  The less vulnerable zone represents approximately 5% of the study area.  The second 
break delineating the vulnerable zone from the more vulnerable zone occurred at the next significant 
stepwise increase in posterior probability at a value of 0.0014, which also corresponded with the prior 
probability. The vulnerable zone represents approximately 29% of the study area.  The remainder of 
the study area fell into the more vulnerable zone and represents approximately 66% of the study area. 
This more vulnerable zone contained the greatest probability of containing a training point. Plate 1 
(back pocket) provides a more detailed display of the relative vulnerability zones. 
 
The response theme (Figure 31) indicated that the areas of highest vulnerability tended to be 
associated with areas of high soil permeability, shallow depth-to-water zones and, to a lesser degree, 
high density of closed topographic depressions. Conversely, areas of lowest vulnerability tended to be 
characterized by relatively low soil permeability values, sparse closed topographic features, and 
deeper depth-to-water zones.   
 
The study area contains a multitude of surface water features, which can represent areas of discharge 
and may be predicted with low posterior probability values.  These discharging surface waters are not 
considered part of the aquifer, although they can originate from it.  The FAVA project was designed 
to focus on the ability for a contaminant to travel through soils, overburden, karst features, etc. to 
enter into the aquifer system.  As a result, it is very important that the FAVA model never be applied 
to assess contamination of surface waters or discharge areas.  
 
Weights calculated for the evidential themes used in the SAS model are listed in Table 8.  The soil 
permeability evidential theme had a greater association with the training points (higher contrast) than 
the other themes and was therefore the primary determinant in predicting areas of vulnerability.  The 
larger absolute value of the negative weights (W2) in Table 8 indicated that the response theme was a 
better predictor of where training points were not likely to occur.  In other words, the SAS FAVA 
model more strongly predicted where the SAS is less vulnerable to contamination than it predicted 
where it was more vulnerable to contamination. See Introduction – Approach – Models Considered – 
Weights of Evidence for a more detailed discussion of the significance of this table.  Confidence 
values for the evidential themes all fell above the target value of 0.674. Conditional independence 
was calculated at 1.00 indicating no dependence between evidential themes. 
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Figure 30. Map showing generalization of depth-to-water evidential theme. Based on calculated 
weights, a binary generalization with a break at a depth of distance of 48 ft was defined by the 
analysis.  Based on the location of training points, blue areas were associated with areas of 
lower vulnerability, while red areas were associated with areas of higher vulnerability. 
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Figure 31. Relative vulnerability of the SAS divided into three zones based on posterior 
probability values displayed in Figure 32. Total dissolved nitrogen concentrations were used as 
a training point theme. See Plate 1 (back pocket) for a more detailed display and discussion of 
the vulnerability zones. 
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Figure 32. Class breaks, represented by green dashed lines, were placed where both a 
significant increase in probability and area were observed. These boundaries correspond with 
relative vulnerability zones delineated in Figure 31 and are indicated in this chart by vertical 
black dashed lines.  

 
 

Confidence Map 
 
The confidence values calculated by dividing posterior probability by its total uncertainty (standard 
deviation) for the SAS model area ranged from 0.862 to 5.810. The higher confidence areas 
corresponded with higher vulnerability areas whereas lower confidence areas corresponded to lower 
vulnerability areas.  These values indicated that the confidence level was above 97.5% for most of the 
model study area, and was greater than 80% for the entire model domain.  Areas of lower confidence 
also corresponded with areas that lack training points.  The confidence map for the SAS model 
response theme is displayed in Figure 33.   
 

Table 8. Response theme table listing weights calculated for each evidential theme and their 
associated contrast and confidence values. 

Evidential Theme W1 W2 Contrast Confidence 

Soil Permeability 0.1061 -1.1830 1.2891 2.5220 

Closed Topographic Depressions 0.1210 -0.5760 0.6970 2.2541 

Depth-to-Water 0.0132 -0.7531 0.7663 0.7616 
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Figure 33. Distribution of confidence values calculated for SAS response theme. 
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Intermediate Aquifer System 
 

Study Area and Extent 
 
The Intermediate Aquifer System (IAS) includes all rocks and sediments that lie between and 
collectively restrict the exchange of water between the overlying SAS and underlying FAS 
(Southeastern Geological Society, 1986). This unit generally acts as a confining unit for the FAS 
where it is present, but also contains minor, moderate-yielding aquifers throughout the State.  It is, 
however, a major source of ground water only in the southwestern part of Florida, and is the region 
selected for the IAS FAVA study area.  Figure 34 displays the study area used by the FGS to assess 
the relative vulnerability of the IAS.  
 
The IAS in southwestern Florida comprises a major regional aquifer system providing ground water 
to municipalities, industries and agriculture. Various researchers have identified several production 
zones (aquifers) within this aquifer system (e.g., Metz, 1993, Torres et al., 2001). Due to the complex 
and discontinuous nature of these zones, it was not feasible to map them or model their individual 
vulnerability within the scope of this project.   
 
The extent of the IAS was based on the combination of the distribution of FDEP public water supply 
wells and an extent proposed by Miller (1986). FDEP wells were plotted in a GIS with a 20-km 
buffer. This method accounted for major production zones of the IAS in the southern part of the 
region, but did not adequately represent areas where the IAS is a principal aquifer system for 
domestic supply in Polk, Sarasota, Manatee, and Hardee Counties. For this region, Miller’s (1986) 
extent was applied.  By combining the polygons for these two areas, a comprehensive extent of the 
IAS where it is predominantly used for public supply was developed for input into the FAVA model. 
 
Large water bodies (those covering greater than approximately 50 acres) were omitted from IAS 
FAVA model because a well would never be drilled in these areas – therefore, they would never 
contain a training point. If the lakes were left in the model, the surface area is increased with no 
chance of increasing the number of training points. This would unnecessarily bias the model, and 
further, large water bodies typically have no soils or other input data associated with them. 
 

Training Points 
 
There were a total of 295 wells in the FDEP background water quality monitoring network that were 
completed in the IAS.  These wells were located throughout the State, but for this project, only those 
falling within the IAS study area defined in Figure 34 were used.  Criteria for selecting IAS training 
point wells also included that the wells be sampled for both ammonia and dissolved nitrogen during 
the same sampling event. There were 130 wells that met these criteria.  The measured values were 
then combined to provide a single analyte value per well, total dissolved nitrogen, on which statistical 
analyses could be completed. 
 
Ammonia concentrations were incorporated into the IAS training point dataset because nitrogen in the 
form of ammonia can be more prevalent than dissolved nitrogen in deeper parts of the IAS where lack 
of dissolved oxygen creates a reducing environment.  If ammonia was not used in conjunction with 
dissolved nitrogen, weights calculated for evidential themes using WofE did not produce significant 
contrast values for use in generalizing the themes.   
 
Using statistical methods described in Results – Data Coverages –Training Points, 32 wells were 
identified as outliers and subsequently removed from the dataset leaving 98 wells for additional 
analysis.  Further statistical analysis returned a 75th percentile combined median value for a total
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Figure 34. Extent of the IAS where it forms a major regional aquifer system in southwest 
Florida. Large water bodies have been omitted from the analysis to avoid biasing the model. 
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dissolved nitrogen concentration of 0.457 mg/L.  There were 26 wells occurring in the dataset with a 
total dissolved nitrogen median value greater than 0.457 mg/L. These 26 wells were used to create the 
training point theme for input into the IAS FAVA model. The resulting prior probability was 
calculated at 0.0009, which represents the chance that a training point will occupy any given unit area 
within the study area, independent of any evidential theme data. The distribution of these wells is 
displayed in Figure 35. 
 

Generalization of Evidential Themes 
 
Several evidential themes were considered for the IAS FAVA model: 
 

• Soil drainage 
• Soil permeability 
• Karst features (derived from closed topographic depressions data layer) 
• Thickness of overburden on IAS 
• Environmental geology map 
• Geologic map of the State of Florida 

 
After extensive sensitivity analyses, three of the above evidential themes were used in the IAS model: 
soil permeability, karst features, and thickness of overburden. The other evidential themes were not 
used because they either did not meet the test of significance for the FAVA project, or the resulting 
weights were counterintuitive with regard to hydrogeologic processes and vulnerability.  For a full 
discussion on the limitations of evidential themes refer to Results – Data Coverages. Modifications 
were made to the evidential themes to calculate weights and then generalize the evidential themes for 
input into the IAS FAVA models. The modifications and generalizations are discussed below.  
 

Soil Permeability 
 
Soil permeability is a measure of the rate at which water travels through the vadose zone.  Areas with 
high soil permeability values are normally associated with higher aquifer vulnerability.  Weights were 
calculated for soil permeability using the cumulative descending method of the WofE model 
technique. The highest contrast of any class was calculated at 7.3 in/hr.  The calculated weights did 
not justify the selection of a multi-class theme because neither contrast nor confidence calculated for 
other classes was significant enough to support delineation of more breaks. As defined by the analysis 
of this evidential theme, the most appropriate break in the soil permeability evidential theme was at 
7.3 in/hr creating a binary generalized theme for input into the IAS FAVA model.  In other words, 
this analysis indicated that areas underlain by soils with permeability values ranging from 0.1 to 7.3 
in/hr were, based on the location of training points, associated with areas of lower vulnerability. 
Conversely, the analysis indicated that areas underlain by soils with permeability values ranging from 
7.3 to 20.0 in/hr, based on the location of training points, were associated with areas of higher 
vulnerability. The generalized theme is displayed in Figure 36.   
 

Effective Karst Features 
 
Effective karst is defined herein as those closed topographic depressions which are believed to 
increase hydrologic communication between land surface and the underlying aquifer system. To 
develop an appropriate representation of karst features in the IAS model, an effective karst GIS grid 
was created based on closed topographic depressions and thickness of IAS overburden. This was 
accomplished by filtering out those depressions underlain by more than 100 feet of IAS overburden.
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Figure 35. Map showing location and distribution of the 26 training points consisting of wells 
completed in the IAS, which were simultaneously measured for both ammonia and dissolved 
nitrogen. These wells had a measured total dissolved nitrogen median value greater than 
0.457 mg/L. 
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Figure 36. Map showing generalization of soil permeability evidential theme. Based on 
calculated weights, a binary generalization with a break at a value of 7.3 in/hr was defined by 
the analysis.  Based on the location of training points, blue areas were associated with areas of 
lower vulnerability, while red areas were associated with areas of higher vulnerability.  
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The 100-ft threshold of overburden thickness has been used to identify karst-prone areas by Cichon et 
al. (2004) and Wright (1974). Though the location of training points was not used to select this filter 
threshold, the lack of their occurrence in areas underlain by more than 100 feet of overburden 
thickness lends support to the use of this filter.  This calculation provided an effective karst evidential 
theme for use in the IAS FAVA model.  Moreover, this filtering procedure removed several karst 
“sags” formed by the dissolution of shell material in shallow sediments.  Removal of sags from this 
evidential theme was appropriate because the features do not provide deep vertical preferential 
pathways to allow surface water to more rapidly reach the IAS.  
 
Because areas nearer to a karst feature are considered more vulnerable to contamination than areas 
further away, a proximity analysis was completed for the effective karst evidential theme by creating 
a 6,000-m buffer zone around each karst feature within which equally-spaced 60-m intervals were 
delineated.  The outermost interval contained all areas of the IAS extent which lie 6,000 m or further 
from a karst feature.  Based on spatial analysis, all training points occurred within 6,000 m from an 
effective karst feature, thereby lending support to that radial distance as a lateral threshold for the 
delineation of intervals within the buffer zone. 
 

IAS Overburden and Effective Karst Feature Interdependence – Fuzzy Logic 
 
In the IAS model, IAS overburden and karst were statistically related because the overburden 
evidential theme was used to develop the effective karst layer – karst features were removed based on 
the presence of more than 100 feet of IAS overburden thickness. When both themes were input into 
the IAS model separately, conditional independence problems arose for the model output. As a result, 
fuzzy logic was utilized to combine the effective karst and IAS overburden into a single evidential 
theme.  As discussed in Introduction – Approach – Models Considered, fuzzy logic handles the 
concept of partial truths and can be described as the process of assigning values to events using a 
gradational or continuous scale between 0 and 1, where 1 represents full membership and 0 is full 
non-membership.  
 
In the effective karst feature evidential theme, a fuzzy membership value of 1 was assigned to all 
areas that were within 60 meters of an effective karst feature. These areas represent full membership. 
A fuzzy membership value of 0 was assigned to the class representing areas 6,000 m or greater from 
karst features, representing full non-membership. Intermediate values were then interpolated in a 
linear manner.  
 
For the IAS overburden evidential theme, areas where the overburden was calculated at zero were 
assigned a fuzzy membership value of 1 representing full membership and areas where the 
overburden was thickest (429 feet) were assigned a value of 0, or full non-membership. Intermediate 
values were then interpolated in a linear manner.  
 
Using these fuzzy membership values the two evidential themes were combined using the fuzzy logic 
Boolean operator OR.  This operator was chosen because it involves the union of a set of values 
where the maximum input controls the output.  The result is an output map, used as evidence, where 
the values are the “best” of both pieces of evidence. The fuzzy logic output was converted to a GIS 
integer grid to be consistent with other evidential themes; and, to preserve data resolution, all values 
were multiplied by 100. The final fuzzy logic output values therefore ranged from 0-100. The new 
IAS overburden/effective karst features evidential theme is displayed in Figure 37.  
 
Areas of the IAS overburden/effective karst features evidential theme with higher values 
corresponded with dense karst feature distribution and thin IAS overburden sediments and were 
associated with higher aquifer vulnerability.  For these reasons, weights were calculated for this 
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Figure 37. Evidential theme produced by combining overburden on IAS with proximity to karst 
features using fuzzy logic. Higher values correspond to thinner overburden and denser karst 
features.  
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evidential theme using the cumulative descending method of the WofE analytical technique. The 
highest contrast of any class was calculated at a fuzzy logic value of 87. The calculated weights did 
not justify the selection of a multi-class theme because neither contrast nor confidence calculated for 
the other classes supported delineation of more breaks. As defined by the analysis of this evidential 
theme, the most appropriate break in the IAS overburden/effective karst features evidential theme was 
at 87 creating a binary generalized theme for input into the IAS FAVA model.  In other words, this 
analysis indicated that areas where fuzzy logic exceeded 87 (i.e., thin overburden and dense effective 
karst) were, based on the location of training points, associated with areas of higher vulnerability. 
Conversely, the analysis indicated that areas where the fuzzy logic value was less than 87 (i.e., thicker 
overburden and sparse effective karst) were, based on the location of training points, associated with 
areas of lower vulnerability. Figure 38 displays the break for this evidential theme.  
 

Response Theme 
 
Using the two evidential themes discussed above, a response theme (Figure 39) was generated 
showing the posterior probability that a unit area contained a training point based on the evidential 
themes used as input.  The posterior probabilities of the response theme ranged from 0.00003 to 
0.00163 across the model domain. Plotting posterior probability against cumulative area as a 
percentage (Figure 40) allowed the delineation of class breaks for display of vulnerability zones in the 
final response theme.  The breaks for these vulnerability zones were selected where a notable 
stepwise increase in posterior probability relative to cumulative area occurred. The first break, which 
delineated the less vulnerable zone from the vulnerable zone, occurred at a posterior probability value 
of 0.000062.  The less vulnerable zone represents approximately 3.5% of the study area.  The second 
break delineating the vulnerable zone from the more vulnerable zone occurred at the next significant 
stepwise increase in posterior probability at a value of 0.0009, which also corresponded with the prior 
probability. The vulnerable zone represents approximately 43.5% of the study area.  The remainder of 
the study area fell into the more vulnerable zone and represents approximately 53% of the study area. 
This more vulnerable zone contained the greatest probability of containing a training point. Plate 2 
(back pocket) provides a more detailed display of the relative vulnerability zones. 
 
The response theme (Figure 39) indicated that the areas of highest vulnerability (high probabilities) 
tended to be associated with areas of dense karst-feature distribution, thinner IAS overburden 
sediments, and, to a lesser degree, high soil permeability. Conversely, areas of lowest vulnerability 
(low probabilities) tended to be determined by sparse karst feature distribution, thicker overburden 
sediments, and low soil permeability values. 
 
The study area contained a multitude of surface water features, which can represent areas of discharge 
and may have been predicted with low posterior probability values.  These discharging surface waters 
are not considered part of the aquifer, although they can originate from it.  The FAVA project was 
designed to focus on the ability for a contaminant to travel through soils, overburden, karst features, 
etc. to enter into the aquifer system.  As a result, it is very important that the FAVA model never be 
applied to assess contamination of surface waters or discharge areas.  
 
Weights calculated for the evidential themes used in the IAS model are included in Table 9.  The IAS 
overburden/effective karst features evidential theme had a greater association with the training points 
(higher contrast) than the soil permeability evidential theme and was therefore the primary 
determinant in predicting areas of vulnerability.  The larger absolute value of the negative weights 
(W2) in Table 9 indicated that the response theme was a better predictor of where training points were 
not likely to occur.  In other words, the IAS FAVA model more strongly predicted where the IAS is 
less vulnerable to contamination than it predicted where it is more vulnerable to contamination.  See 
Introduction – Approach – Models Considered – Weights of Evidence for a more detailed discussion 
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Figure 38.  Map showing generalization of IAS overburden/karst feature evidential theme. 
Based on calculated weights, a binary generalization with a break at a value of 87 was defined 
by the analysis.  Based on the location of training points, blue areas were associated with areas 
of lower vulnerability, while red areas were associated with areas of higher vulnerability. 
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Figure 39.  Relative vulnerability of the IAS divided into three zones based on posterior 
probability values displayed in Figure 40. Total dissolved nitrogen concentrations were used as 
a training point theme. See Plate 2 (back pocket) for a more detailed display and discussion of 
the vulnerability zones. 



82 

0.00001

0.00010

0.00100

0.01000

0 10 20 30 40 50 60 70 80 90 100

Cumulative Area (%)

Po
st

er
io

r P
ro

ba
bi

lit
y

0.00090

0.00006

Vulnerable

Le
ss

 V
ul

ne
ra

bl
e

More Vulnerable

 

Figure 40. Class breaks, represented by green dashed lines, were placed where both a 
significant increase in probability and area were observed. These boundaries correspond with 
relative vulnerability zones delineated in Figure 39 and are indicated in this chart by vertical 
black dashed lines. 

 

Table 9. Response theme table listing weights calculated for each evidential theme and their 
associated contrast and confidence values.  

 
of the significance of this table.  Confidence values for the evidential themes all fell above the target 
value of 0.674. Conditional independence was calculated at 1.01 indicating no dependence between 
evidential themes. 
 

Confidence Map 
 
The confidence values for the IAS model area ranged from 0.70 to 2.90. Like the SAS response 
theme, the higher confidence areas corresponded with higher vulnerability areas whereas lower 
confidence areas corresponded to lower vulnerability areas. These values indicated that the 
confidence level was above 90% for the majority of the model domain, and was greater than 75% for 
the entire model domain.  Areas of lower confidence corresponded with areas that lack training 
points. The confidence map for the IAS FAVA model is displayed in Figure 41.   

Evidential Theme W1 W2 Contrast Confidence 

Karst/Overburden 0.4569 -2.3194 2.7763 2.7222 

Soil Permeability 0.0844 -1.1063 1.1907 1.1674 
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Figure 41. Distribution of confidence values calculated for IAS response theme. 
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Floridan Aquifer System 

 
Study Area and Extent 

 
The Floridan Aquifer System (FAS) comprises a thick sequence of carbonate rocks which function 
regionally as a major aquifer system. It ranges from a fully-confined aquifer system where overlain 
by the IAS to an unconfined aquifer system in areas where it is at or near land surface.  The FAS 
extends throughout the entire State of Florida, however, in the southern peninsula and western 
panhandle, it is not used as a source of public water supply due to high salinity of ground water 
(Southeastern Geological Society, 1986). 
 
The extent of the FAS used for input into the FAVA model was based on the distribution of FDEP 
public water supply wells. FDEP wells were plotted in a GIS with a 20-km buffer to develop a study 
area extent for the FAS.  This extent represented areas where this aquifer system is used as a principal 
aquifer system.  The extent is displayed in Figure 42.  
 
Large water bodies (those covering greater than approximately 50 acres) were omitted from FAS 
FAVA model because a well would never be drilled in these areas – therefore, they would never 
contain a training point. If the lakes were left in the model, the surface area was increased with no 
chance of increasing the number of training points. This unnecessarily biased the model, and, further, 
large water bodies typically have no soils or other input data associated with them.  
 
 

Training Points 
 
There were a total of 1,297 wells in the FDEP background water quality monitoring network that 
were completed only in the FAS (i.e., open-hole portion of well open to the FAS only).  Of these 
wells, 781 were measured for dissolved nitrogen.  Ammonia concentrations were not used to develop 
the training point theme for the FAS models as they were in the SAS and IAS models. Because thin 
peat and lignite beds are present within the Avon Park Formation of the FAS (Vernon, 1951) there 
was a potential for in situ introduction of ammonia as opposed to from land surface. 
 
Using statistical methods described in Results – Data Coverages –Training Points, 152 wells were 
identified as outliers and subsequently removed from the dataset leaving 629 wells for additional 
analysis.  Further statistical analysis returned a 75th percentile median value for dissolved nitrogen 
concentration of 0.0355 mg/L.  There were 148 wells occurring in the dataset with a measured 
median dissolved nitrogen value greater than 0.0355 mg/L. These 148 were used to create the training 
point theme for input into the FAS FAVA model. The resulting prior probability was calculated at 
0.0013, which represents the chance that a training point will occupy any given unit area within the 
study area, independent of any evidential theme data. The distribution of these wells is displayed in 
Figure 43. 
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Figure 42. Extent of the FAS where it forms a major regional aquifer system throughout 
Florida.  Large water bodies were omitted from the analysis to avoid biasing the model. 
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Figure 43. Map showing location and distribution of the 148 training points consisting of wells 
completed in the FAS, which were measured for dissolved nitrogen. These wells had a measured 
dissolved nitrogen value greater than 0.0355 mg/L. 
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Generalization of Evidential Themes  
 
Several evidential themes were considered for input into the FAS FAVA model: 
 

• Soil drainage 
• Soil permeability 
• Karst features (derived from closed topographic depressions data layer) 
• Thickness of IAS 
• Depth-to-water 
• Potentiometric surface of the FAS 
• Hydraulic head difference between water table and FAS 
• Environmental geology map 
• Geologic map of the State of Florida 
• Leakance of the IAS 

 
For the FAS FAVA model four of the above evidential themes were ultimately used: soil 
permeability, karst features, hydraulic head difference, and IAS thickness.  The other evidential 
themes were not used because they either did not meet the test of significance for the FAVA project, 
or the resulting weights were counterintuitive with regard to hydrogeologic processes and 
vulnerability.  While not discussed in Results – Data Coverages, leakance of the IAS was considered 
as an evidential theme for the FAS.  Data needed to complete leakance coverage of the IAS for the 
extent of the FAS was not available at the time of this report.  For a full discussion on the limitations 
of evidential themes refer to Results – Data Coverages.  Modifications were made to the evidential 
themes to calculate weights and then generalize the evidential themes for input into the FAS FAVA 
models. The modifications and generalizations are discussed below.  
 
 

Soil Permeability 
 
Soil permeability is a measure of the rate at which water travels through the vadose zone.  Areas with 
high soil permeability values are normally associated with higher aquifer vulnerability.  Weights were 
calculated for soil permeability using the cumulative descending method of the WofE model 
technique.  The highest contrast of any class was calculated at 19.7 in/hr. The calculated weights did 
not justify the selection of a multi-class theme because neither contrast nor confidence calculated for 
other classes was significant enough to support delineation of more breaks. As defined by the analysis 
of this evidential theme, the most appropriate break in the soil permeability evidential theme was at 
19.7 in/hr creating a binary generalized theme for input into the FAS FAVA model (Figure 44). In 
other words, this analysis indicated that areas underlain by soils with permeability values ranging 
from 0.1 to 19.7 in/hr were, based on the location of training points, associated with areas of lower 
vulnerability. Conversely, the analysis indicated that areas underlain by soils with permeability values 
ranging from 19.7 to 20.0 in/hr were, based on the location of training points, associated with areas of 
higher vulnerability.  The generalized theme is displayed in Figure 44. 
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Figure 44. Map showing generalization of soil permeability evidential theme. Based on 
calculated weights, a binary generalization with a break at a value of 19.7 in/hr was defined by 
the analysis.  Based on the location of training points, blue areas were associated with areas of 
lower vulnerability, while red areas were associated with areas of higher vulnerability.  
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Effective Karst Features 
 
Effective karst is defined as in Results – FAVA Model Outputs – Intermediate Aquifer System – those 
closed topographic depressions which are believed to increase hydrologic communication between 
land surface and the underlying aquifer system.  Features were selected by intersecting the IAS 
thickness grid with the locations of closed topographic depressions.  Based on expert hydrogeologic 
knowledge, areas that were underlain by 140’ or less of IAS-type sediments were selected.  
Additional features were included for those areas where the IAS was not mappable by selecting those 
depressions that were underlain by 100 feet or less of surficial sediment thickness.  Cichon et al. 
(2004) and Wright (1974) have used the 100-ft threshold of overburden thickness to identify karst 
prone areas.  This calculation provided an effective karst evidential theme for use in the FAS FAVA 
model.  Moreover, this filtering technique also removed sags as described in Results – FAVA Model 
Outputs – Intermediate Aquifer System – Effective Karst Features.  
 
Because areas nearer to a karst feature are considered more vulnerable to contamination than areas 
further away, a proximity analysis was completed for the effective karst evidential theme by creating 
a 3,600-m buffer zone around each karst feature within which equally-spaced 60-m intervals were 
delineated.  The outermost interval contained all areas of the FAS extent which lie 3,600 m or further 
from a karst feature.  Based on spatial analysis, nearly 90% of all training points occurred within 
3,600 m from an effective karst feature, thereby lending support to that radial distance as a lateral 
threshold for the delineation of intervals within the buffer zone.   
 
As stated above, areas closer to an effective karst feature are normally associated with higher aquifer 
vulnerability, and, as a result, weights were calculated for the effective karst feature evidential theme 
using the cumulative ascending method.  The highest contrast of any class was calculated at a 
distance of 3,420 m from an effective karst feature.  The calculated weights did not justify the 
selection of a multi-class theme because neither contrast nor confidence calculated for the other 
classes supported delineation of more breaks. As defined by the analysis of this evidential theme, the 
most appropriate break in the effective karst feature evidential theme was at 3,420 m creating a binary 
generalized theme for input into the FAS FAVA model.  In other words, this analysis indicated that 
areas beyond 3,420 m of an effective karst feature were, based on the location of training points, 
associated with areas of lower vulnerability. Conversely, the analysis indicated that areas within 
3,420 m of an effective karst feature were, based on the location of training points, associated with 
areas of higher vulnerability.  The generalized theme is displayed in Figure 45. 
 
 

IAS Thickness 
 
Areas underlain by thinner IAS sediments are normally associated with higher aquifer vulnerability. 
Weights were therefore calculated for the IAS evidential theme using the cumulative ascending 
method. The highest contrast of any class was calculated at a thickness interval of 451 feet.  The 
second highest contrast of any class was calculated at a thickness interval of 160 feet (Figure 46).  
 
The calculated weights therefore justified the selection of a multi-class theme because the contrast 
values for both of these breaks are statistically significant at a 75% confidence level. As defined by 
the analysis of this evidential theme, the most appropriate breaks in the IAS thickness evidential 
theme were at 160 ft and 451 ft creating a multi-class generalized theme for input into the FAS 
FAVA model. In other words, this analysis indicated that areas underlain by greater than 451 feet of 
IAS were, based on the location of training points, associated with less vulnerable zones, areas 
underlain by between 160 and 451 feet of IAS were associated with vulnerable zones, and areas  
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Figure 45. Map showing generalization of effective karst features evidential theme. Based on 
calculated weights, a binary generalization with a break at a distance of 3,420 m was defined by 
the analysis.  Based on the location of training points, blue areas were associated with areas of 
lower vulnerability, while red areas were associated with areas of higher vulnerability. 
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Figure 46. IAS thickness in feet plotted against contrast values calculated using WofE. 
Statistically significant high contrast values were calculated at 160 ft and 451 ft defining a 
multi-class theme with generalized breaks at these values.  

 
underlain by less than 160 feet of IAS were associated with more vulnerable zones.  The generalized 
theme is displayed in Figure 47. 
 

Hydraulic Head Difference between the Water Table and the FAS 
 
Areas where the hydraulic head difference between the water table and the FAS is great, indicating 
the potential for downward recharge to the FAS, are generally associated with higher aquifer 
vulnerability.  Weights were therefore calculated for the hydraulic head difference evidential theme 
using the cumulative descending method.  The highest contrast for any class was calculated at a 
hydraulic head difference value (i.e., water-table elevation minus FAS potentiometric surface) of -8 
feet.  The calculated weights did not justify the selection of a multi-class theme because neither 
contrast nor confidence calculated for the other classes supported delineation of more breaks.  As 
defined by the analysis, the most appropriate break in the hydraulic head difference evidential theme 
equals -8 feet, thus creating a binary generalized theme for input into the FAS FAVA model.  In other 
words, this analysis indicated that areas in which the hydraulic head difference is greater than -8 ft 
were, based on the location of training points, associated with areas of higher vulnerability. 
Conversely, the analysis indicated that areas in which the hydraulic head difference was less than -8 ft 
were, based on the location of training points, associated with areas of lower vulnerability. The 
generalized theme is displayed in Figure 48. 
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Figure 47.  Map showing generalization of IAS thickness evidential theme. Based on calculated 
weights, a multi-class generalization with a break at a value of 160 and 451 ft was defined by 
the analysis.  Based on the location of training points, blue areas were associated with areas of 
lower vulnerability, while red areas were associated with areas of higher vulnerability.
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Figure 48.  Map showing generalization of hydraulic head difference evidential theme. Based on 
calculated weights, a binary generalization with a break at a value -8 ft was defined by the 
analysis.  Based on the location of training points, blue areas were associated with areas of 
lower vulnerability, while red areas were associated with areas of higher vulnerability. 
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Response Theme 
 
Using the four evidential themes discussed above, a response theme (Figure 49) was generated 
showing the posterior probability that a unit area contained a training point based on the evidential 
themes used as input.  The posterior probabilities of the response theme ranged from 0.00003 to 
0.00371 across the model domain. Plotting posterior probability against cumulative area as a 
percentage (Figure 50) allowed the delineation of class breaks for display of vulnerability zones in the 
final response theme.  The breaks for these vulnerability zones were selected where a notable 
stepwise increase in posterior probability relative to cumulative area occurred.  The first break, which 
delineated the less vulnerable zone from the vulnerable zone, occurred at a posterior probability value 
of 0.00029.  The less vulnerable zone represents approximately 21% of the study area.  The second 
break delineating the vulnerable zone from the more vulnerable zone occurred at the next significant 
stepwise increase in posterior probability at a value of 0.0013, which also corresponded with the prior 
probability. The vulnerable zone represents approximately 34% of the study area.  The remainder of 
the study area fell into the more vulnerable zone and represents approximately 45% of the study area. 
This more vulnerable zone contained the greatest probability of containing a training point. Plate 3 
(back pocket) provides a more detailed display of the relative vulnerability zones.  
 
Conditional independence was calculated at 0.64, which fell outside the target range of 1.00 ± 0.15 
indicating dependence between evidential themes.  This was resolved by using the logistic regression 
option described in Introduction – Approach – Models Considered – Weights of Evidence Model.  
 
The response theme (Figure 49) indicated that the areas of highest vulnerability (high probabilities) 
tended to be associated with areas of thinner IAS sediments, dense karst-feature distribution, positive 
hydraulic head difference, and, to a lesser degree, high soil permeability. Conversely, areas of lowest 
vulnerability (low probabilities) tended to be determined by thick IAS sediments, sparse karst-feature 
distribution, negative (less than -8 ft) hydraulic head difference, and low soil permeability values.  
 
The study area contains a multitude of surface water features, which can represent areas of discharge 
and may be predicted with low posterior probability values.  These discharging surface waters were 
not considered part of the aquifer, although they can originate from it.  The FAVA project was 
designed to focus on the ability for a contaminant to travel through soils, overburden, karst features, 
etc. to enter into the aquifer system.  As a result, it is very important that the FAVA model never be 
applied to assess contamination of surface waters or discharge areas.  
 
Weights calculated for the evidential themes used in the FAS model are included in Table 10. The 
IAS thickness evidential theme had a greater association with the training points (higher contrast) 
than the other evidential themes and was therefore the primary determinant in predicting areas of 
vulnerability.  The larger negative weights for IAS thickness (W2 and W3), proximity to karst (W2), 
and hydraulic head difference (W2) also indicated where training points were not likely to occur 
because the negative weights were stronger than the positive weights (i.e., have a higher absolute 
value).  Conversely, soil permeability indicated where training points were likely to occur because of 
the stronger positive weight (W1).  See Introduction – Approach – Models Considered – Weights of 
Evidence for a more detailed discussion of the significance of this table.  Confidence values for all 
evidential themes fell above the target value of 0.674; in fact, all confidence values for the FAS fell 
above a value of 2.576 which corresponds to a confidence level of approximately 99.5% (see 
Introduction – Approach – Models Considered – Weights of Evidence and Discussion – Validation of 
Models for further discussion of confidence). 
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Figure 49.  Relative vulnerability of the FAS divided into three zones based on posterior 
probability values displayed in Figure 50. Dissolved nitrogen concentrations were used as a 
training point theme. See Plate 3 (back pocket) for a more detailed display and discussion of the 
vulnerability zones. 
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Figure 50. Class breaks, represented by green dashed lines, were placed where both a 
significant increase in probability and area were observed. These boundaries correspond with 
relative vulnerability zones delineated in Figure 49 and are indicated in this chart by vertical 
black dashed lines. 

 

Table 10. Response theme table listing weights calculated for each evidential theme and their 
associated contrast and confidence values. 

Evidential Theme W1 W2 W3 Contrast Confidence 

IAS Thickness 0.4127 -1.7500 -2.7121 3.1248 3.1136 

Proximity to Karst 0.4794 -1.1573  1.6367 7.0812 

Hydraulic Head Difference 0.2736 -1.5470  1.8206 5.2923 

Soil Permeability 0.7336 -0.0529  0.7865 2.7967 

 
Confidence Map 

 
The confidence values for the FAS model area ranged from 1.18 to 10.76.  The higher confidence 
areas corresponded with higher vulnerability areas whereas lower confidence areas corresponded to 
lower vulnerability areas. These values indicated that the confidence level was above 99.5% for the 
majority of the model domain, and was greater than 90% for all but a few areas across the entire 
model domain.  Areas of lower confidence also corresponded with areas that lack training points.  
The confidence for the FAS model response them is displayed in Figure 51. 
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Figure 51. Distribution of confidence values calculated for FAS response theme.   
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DISCUSSION 
 
Introduction 
 
Although numerous hydrogeological aspects of the FAVA evidential themes and response themes are 
of significant interest, such an evaluation is beyond the scope of this study. Instead, the focus of this 
Discussion section is more applied in nature.  Four primary focus areas are presented in the following 
pages: 1) methods of model validation for each aquifer system, 2) resolution of evidential themes, 3) 
potential refinement of evidential themes, and 4) appropriate use of the FAVA maps.   
 
Maintaining high standards of data quality was of paramount importance in the development of the 
FAVA project’s evidential themes and response themes.  A few examples of how data quality was 
addressed include: 1) use of peer-reviewed published data, 2) utilizing the expertise of the TAC, i.e., 
hydrogeology, modeling, statistics, environmental planning, 3) TAC review of evidential themes, 
methodologies, model comparisons, pilot study results, and response themes, 4) continued feedback 
from a broader pool of experts through presentations of FAVA results at professional meetings, for 
example, Arthur et al. (2002), Baker et al. (2002), Baker et al. (2003), Cichon et al. (2003), and Wood 
et al., (2003)  5) implementation of a detailed quality assurance/quality control program during the 
development of the FDEP DEM, and 6) maintenance of accurate and complete records for metadata 
(for an example, see Appendix II).  
 
Aside from data-quality challenges that may exist with regard to a project of this magnitude, another 
potential limiting factor exists regarding application of the model results that involves the evidential 
themes.  Resolution is a measure of the level of detail of a given set of data.  For example, at the onset 
of this study, the only available dataset reflecting surface topography, the USGS DEM, had a lateral 
resolution of 30 m. This level of resolution allowed for changes in topography to be seen only at 30 
m. Not only is this a coarse model of topography by some standards, surface elevation errors 
exceeding 50 feet were also discovered within the dataset (see Results – Data Coverages – 
Topography).  As a result, a new, more accurate and more highly resolved DEM was needed.  During 
the course of this project, the FGS worked with other FDEP programs and water management 
districts to develop a statewide FDEP DEM with a lateral resolution of 15 m and vertical resolution 
equal to that of the USGS 7.5-minute quadrangle maps (± 5 or 10 feet, depending on each map’s 
contour interval). 
 
During the course of the FAVA project, every effort was made to maximize use of existing data and 
produce new data coverages needed for the modeling effort while maintaining the highest possible 
accuracy and precision of those coverages.  The new data coverages (e.g., thickness of IAS, statewide 
environmental geology, top of FAS, and the FDEP DEM) are derivative FAVA products that alone 
are important contributions to the geological, planning and environmental management community.  
 
Model Validation and Sensitivity Analysis 
 
Validation and sensitivity analyses comprise a significant phase of any modeling project as they allow 
evaluation of the optimization of model parameters and accuracy of the results.  Most of the 
sensitivity analyses were spatial in nature; they involved developing FAVA response themes for 
individual counties, and then for a region encompassing both counties to assess the differences.  Other 
sensitivity analyses helped select and refine evidential themes to minimize the amount of requisite 
data inputs while maximizing the results of the models as measured through statistical assessment.  
During this process, for example, it was discovered that soil permeability, rather than soil drainage, 
was a better representation of aquifer vulnerability in the model.  Moreover, during iterations through 
the modeling process, techniques were explored with respect to data consolidation such as the “fuzzy 
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combination” of proximity to karst features with IAS overburden thickness in the IAS WofE model. 
Other sensitivity analyses were completed throughout the development of this project; as a result, 
some evidential themes originally considered for use were omitted.  This occurred for two main 
reasons: the evidential themes did not meet the test of significance (0.674, or 75%) for the FAVA 
project, or the resulting weights were counterintuitive with regard to hydrogeologic processes and 
vulnerability.  
 
Among the many strengths of applying WofE to estimate aquifer vulnerability is that this technique 
is, in a general sense, self-validating due to the training point component of the process.  FAVA 
model output validation and sensitivity was accomplished via several methods:  
 

• Use of random 75% subset of training points 
• Comparing land use with posterior probability 
• Comparing dissolved nitrogen values with posterior probability 
• Using a different training point set (dissolved oxygen) 

 
In the sections that follow, these methods are discussed relative to the three FAVA response themes 
(SAS, IAS and FAS). 
    

Random 75% Subset of Training Points 
 
If the FAVA evidential themes and training points are robust (i.e., not sensitive to subtle changes in 
the training data set), one would expect the response theme patterns for the full training data set and a 
subset to be similar.  For this sensitivity test, a training point theme consisting of a random subset of 
75% of the original training points was generated and the models were re-executed.  Response themes 
generated for each aquifer system using the random subset of points were divided into three 
vulnerability classes using the methodology described in the Results section. The subset response 
themes were then compared to the original response themes.  Two statistical tests – kappa coefficient 
and Spearman’s rank – were used to evaluate the degree of correlation between the FAVA response 
theme and the subset response theme. 
 
The kappa coefficient was used to measure the amount of spatial agreement between response themes 
while taking into account agreement that could have occurred by chance.  Additionally, conditional 
kappa values were calculated to determine the amount of agreement between each vulnerability class 
of the two response themes.  A cross-tabulation matrix was used to classify the response themes by 
area (in square meters) and aided in the calculation of observed and expected proportions (i.e., 
agreement).  Values along the diagonal in this table (upper left to lower right) reflect the amount of 
agreement between response themes cells.  The other values in the table reflect where the response 
themes were mismatched.  Table 11 is an example of the cross-tabulation matrix.  
 
Kappa coefficient results can range between -1 (perfect disagreement) and 1 (perfect agreement).  A 
value of zero indicated that the agreement was no better than that expected due to chance (Bonham-
Carter 1994). Kappa coefficients calculated in the FAVA project were all positive values. Positive 
kappa coefficients can be interpreted using Table 12. 
 
The area-weighted Spearman’s Rank correlation coefficient was used to determine if a significant 
correlation existed between the two response themes. The FAVA response themes were ranked by 
sorting the posterior probability values in ascending order and assigning integer values.  The response 
themes were then combined to create a unique-conditions grid to compare the ranks for the same 
areas.  The Spearman’s Rank correlation coefficient is always between 1 and -1 as with the kappa 
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coefficient.  A value of 1 indicated perfect positive correlation between response themes and a value 
of -1 indicated there was perfect negative correlation between response themes. A value of zero 
represented no correlation between response themes. 

 

Table 11. Example cross-tabulation matrix of the area in square meters per class of a FAVA 
response theme and 75% subset response theme.  Values along the diagonal reflect the amount 
of agreement. 

 

More Vulnerable Vulnerable Less Vulnerable Total

More Vulnerable 42,096,002,400 524,043,900 0 42,620,046,300

Vulnerable 761,423,400 18,469,155,600 122,436,900 19,353,015,900

Less Vulnerable 0 39,979,800 2,696,742,000 2,736,721,800

Total 42,857,425,800 19,033,179,300 2,819,178,900 64,709,784,000
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Table 12. Kappa coefficient values and their associated interpretation (Landis and Koch, 1977).  

Interpretation of kappa values 

Kappa Interpretation 

< 0 No agreement 

0.0 – 0.19 Poor agreement 

0.20 – 0.39 Fair agreement 

0.40 – 0.59 Moderate agreement 

0.60 – 0.79 Substantial agreement 

0.80 – 1.00 Almost perfect agreement 

 
Land Use vs. Posterior Probability 

 
A GIS-based tool known as “zonal statistics” allows comparison of model results with other map-
based information.  A concern exists regarding validation because the results of the aquifer 
vulnerability assessment may correlate with human activities on the land surface, despite efforts in the 
FAVA approach to only utilize and predict characteristics of the natural system.  Zonal statistics were 
used to evaluate possible associations between land use and the distribution of mean posterior 
probabilities. Land use data was obtained from FDEP GIS website for each of Florida’s five water 
management districts and then compiled into a single GIS coverage of the State (NWFWMD, 1995; 
SFWMD, 1995; SJRWMD, 1995; SFWMD, 1995; SRWMD, 1995; SWFWMD, 1995). If a strong 
correlation existed between certain types of land use and higher vulnerable areas (i.e., areas of high 
posterior probabilities), one may conclude that there was bias in the results due to anthropogenic 
activities. Elimination of this potential correlation was crucial in validating the objectivity of the 
FAVA response themes.  
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Dissolved Nitrogen Data Distribution vs. Posterior Probability 
 
The presence of dissolved nitrogen was used in the FAVA modeling process as a proxy indicator of 
aquifer system vulnerability (see Results – FAVA Model Outputs).  Once outlier wells with anomalous 
values were removed to yield water-quality values that represent the least human-impacted 
conditions, it follows that areas of higher concentrations of these constituents should correspond to 
areas of high vulnerability.  In other words, higher total dissolved nitrogen in the aquifer systems 
should generally correlate with areas of higher posterior probabilities in the response themes. 
 
To assess this hypothesis and provide another method of model validation for each aquifer system, 
training point median values were averaged and plotted against their respective posterior probability 
values for each probability class in the aquifer vulnerability response themes.  Although this is a 
qualitative validation, there is value in the technique in that a positive correlation should exist. 
 

Using a Different Training Point Theme 
 
Models were ultimately validated by creating a training point theme based on a parameter that reflects 
vulnerability yet is independent of nitrogen.  Based on data availability, dissolved oxygen was chosen 
for this validation method.  For each aquifer system, weights were re-calculated for each evidential 
theme using a dissolved oxygen training point set and a new response theme was generated. The 
model results were compared with the results of the dissolved nitrogen-based FAVA models.  If the 
original FAVA response theme was valid, one would expect that the vulnerability maps produced 
using training data set would produce similar results.  Comparison of the two response themes was 
achieved using the same two statistical tests as applied in the 75% subset methods: kappa coefficient 
and Spearman’s rank correlation coefficient.   
 
Sensitivity and Validation of the SAS FAVA map 
 

Random 75% Subset of Training Points (SAS) 
 
A subset of the SAS total dissolved nitrogen training point theme was generated using a random 
selection process. This random subset included 75% of the original wells for a total of 70 training 
points and yielded a prior probability of 0.0011. Weights were then recalculated for each evidential 
theme, class breaks were selected, and a response theme was generated (Figure 52). The pattern of 
posterior probabilities was nearly identical to the original total dissolved nitrogen response theme. 
 
The kappa coefficient was used to measure the amount of spatial agreement between the random 
subset response theme and the SAS FAVA response theme.  The kappa coefficient between the 
response themes was calculated at 0.953.  Additionally, conditional kappa values were calculated to 
determine the amount of agreement between each vulnerability class of the two response themes 
being compared.  Table 13 displays the conditional kappa coefficient between each vulnerability class 
of the two response themes. Both the agreement between each class and the overall agreement 
between the two response themes was almost perfect (Table 12). The area-weighted Spearman’s Rank 
correlation coefficient for the SAS FAVA response theme and the random subset response theme was 
calculated at 0.798 indicating a very strong positive correlation between the response themes.  This 
value corresponds to a level of confidence of 99% for the correlation of the two response themes. 
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Figure 52.  Relative vulnerability of the SAS divided into three zones based on posterior 
probability values using a random 75% subset of the original total dissolved nitrogen training 
point theme.  The same methodology used in the Results – FAVA Model Output was used 
herein to determine vulnerability class breaks.  
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Table 13. Conditional kappa coefficient values between the random 75% subset response theme 
and the FAVA response theme for the SAS model. Kappa coefficient values are reported 
between each vulnerability class. 

Agreement Conditional Kappa (Kf) values 

More Vulnerable Classes 0.964 

Vulnerable Classes 0.935 

Less Vulnerable Classes 0.985 

 
Land Use vs. Posterior Probability (SAS) 

 
Zonal statistics were calculated to compare the statewide land use GIS coverage to the distribution of 
the posterior probability values for the SAS FAVA response theme (Figure 53).  Wetlands and upland 
forests had slightly lower mean posterior probability values, but overall, no strong association could 
be drawn between any one type of land use and average posterior probability values.  This indicated 
that land use was not influencing the distribution of the training point set, and, therefore, did not 
significantly affect the response theme for the SAS FAVA model.  
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Figure 53. Land use plotted against posterior probability values in the SAS FAVA response 
theme. Though Rangeland and Urban and Built-Up areas have a slightly stronger association 
with land use, no strong association could be drawn between any land use type and the 
distribution of posterior probability.  
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Total Dissolved Nitrogen Data versus Posterior Probability (SAS) 

 
Posterior probability values were compared with total dissolved nitrogen dataset from which the 
training point theme was extracted.  Average total dissolved nitrogen median concentrations for each 
posterior probability class in the response theme were plotted versus posterior probability values 
(Figure 54). As expected, a positive trend was observed between posterior probability and total 
dissolved nitrogen values.  
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Figure 54. Relationship between average total dissolved nitrogen median concentrations and posterior 
probability classes of the SAS response theme.  Note the positive correlation between increasing total 
dissolved nitrogen and posterior probability.  
 

Using a Different Training Point Set (SAS) 
 
A training point set was developed for the SAS study area from wells measured for dissolved oxygen 
in the FDEP background water quality monitoring network.  Outliers were removed and statistical 
analysis returned a 75th percentile median value for dissolved oxygen concentration of 1.03 mg/L.  
There were 91 wells occurring in the dataset with a measured median dissolved oxygen value greater 
than 1.03 mg/L, which yielded a prior probability of 0.0014. Using this dissolved oxygen training 
point set, a validation response theme was developed to compare to the total dissolved nitrogen 
model.  The same input themes were used, and weights were calculated for each theme.  The response  
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Figure 55.  Relative vulnerability of the SAS divided into three zones based on posterior 
probability values using training point theme based on dissolved oxygen.  The same 
methodology used in the Results – FAVA Model Output was used to determine vulnerability 
class breaks. 
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theme is shown in Figure 55. The pattern of posterior probabilities was nearly identical to the SAS 
FAVA response theme. The dissolved oxygen model predicts higher vulnerability in the northeast 
part of the State, a small section of the Biscayne Aquifer, and the southern tip of Florida. 
 
The kappa coefficient was used to measure the amount of spatial agreement between the dissolved 
oxygen response theme and the SAS FAVA response theme.  The kappa coefficient between the 
response themes was calculated at 0.670. Additionally, conditional kappa values were calculated to 
determine the amount of agreement between each vulnerability class of the two response themes 
being compared.  Both the agreement between each class and the overall agreement between the two 
response themes was substantial. Table 14 displays the kappa coefficient between each vulnerability 
class of the two response themes. 
 

Table 14. Conditional kappa coefficient values between the dissolved oxygen response theme 
and the FAVA response theme for the SAS model. Kappa coefficient values are reported 
between each vulnerability class. 

Agreement Conditional Kappa (Kf) values 

More Vulnerable Classes 0.643 

Vulnerable Classes 0.714 

Less Vulnerable Classes 0.632 

 
The area-weighted Spearman’s Rank correlation coefficient for the original SAS response theme and 
the dissolved oxygen response theme was calculated at 0.985 indicating a very strong positive 
correlation between the response themes.  This value corresponds to a level of confidence of 99% for 
the correlation of the two response themes.   
 
Sensitivity and Validation of the IAS FAVA model 
 

Random 75% Subset of Training Points (IAS) 
 
A subset of the IAS total dissolved nitrogen training point theme was generated using a random 
selection process. This random subset included 75% of the original wells for a total of 20 training 
points and yielded a prior probability of 0.0007. Weights were then recalculated for each evidential 
theme, class breaks were selected, and a response was theme generated (Figure 56). The pattern of 
posterior probabilities was nearly identical to the original total dissolved nitrogen response theme. 
 
The kappa coefficient was used to measure the amount of spatial agreement between the random 
subset response theme and the IAS FAVA response theme. The kappa coefficient between the 
response themes was calculated at 0.833 indicating that the overall agreement between the two 
response themes was almost perfect. Additionally, conditional kappa values were calculated to 
determine the amount of agreement between each vulnerability class of the two response themes 
being compared.  Table 15 displays the kappa coefficient between each vulnerability class of the two 
response themes. According to Table 12, the conditional kappa values for the 75% subset response 
theme and the IAS FAVA response theme indicated almost perfect agreement between the more 
vulnerable and less vulnerable classes.  The conditional kappa value for the vulnerable classes 
indicated substantial agreement between the two response themes.   
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Figure 56.  Relative vulnerability of the IAS divided into three zones based on posterior 
probability values using a random 75% subset of the original total dissolved nitrogen training 
point theme.  The same methodology used in the Results – FAVA Model Output was used herein 
to determine vulnerability class breaks. 
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Table 15. Conditional kappa coefficient values between the random 75% subset response theme 
and the FAVA response theme for the IAS model. Kappa coefficient values are reported 
between each vulnerability class. The asterisk indicates these values have been rounded. 

Agreement Conditional Kappa (Kf) values 

More Vulnerable Classes 1.000* 

Vulnerable Classes 0.691 

Less Vulnerable Classes 1.000* 

 
 
The area-weighted Spearman’s Rank correlation coefficient for the IAS FAVA response theme and 
the random subset response theme was calculated at 0.999 indicating a near-perfect positive 
correlation between the response themes.  This value corresponds to a level of confidence of 98% for 
the correlation of the two response themes. 
 

Land Use vs. Posterior Probability (IAS) 
 
Zonal statistics were calculated to compare the statewide land use GIS coverage (compiled as 
described in Discussion – Model Validation Techniques) to the distribution of the posterior 
probability values for the IAS FAVA response theme (Figure 57).  Wetlands and barren lands had 
lower mean posterior probability values, but overall, no strong association was observed between any 
one type of land use and average posterior probability values.  Wetlands and barren lands (i.e., sandy 
areas, beaches, exposed rock) likely have lower posterior probability due to fewer wells having been 
drilled in these areas.  These two land uses, which comprise only 0.4% of the total study area land use 
are therefore underrepresented by training points.   
 
 

Total Dissolved Nitrogen Data versus Posterior Probability (IAS) 
 
Posterior probability values were compared with total dissolved nitrogen dataset from which the 
training point theme was extracted.  Average total dissolved nitrogen median concentrations for each 
posterior probability class in the response theme were plotted versus posterior probability values 
(Figure 58). As expected, a positive trend was observed between posterior probability and total 
dissolved nitrogen values.  
 

Using a Different Training Point Set (IAS) 
 
A training point set was developed for the IAS study area from wells measured for dissolved oxygen 
in the FDEP background water quality monitoring network.  Outliers were removed and statistical 
analysis returned a 75th percentile median value for dissolved oxygen concentration of 0.93 mg/L.  
There were 22 wells occurring in the dataset with a measured median dissolved oxygen value greater 
than 0.93 mg/L, which yielded a prior probability of 0.0008. Using this dissolved oxygen training 
point set, a validation response theme was developed to compare to the total dissolved nitrogen 
model.  The same input themes were used, and weights were calculated for each theme.  The response 
theme is shown in Figure 59. The pattern of posterior probabilities was nearly identical to the IAS 
FAVA response theme.  
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Figure 57. Land use plotted against posterior probability values in the IAS FAVA response 
theme. Though Wetland and Barren Land areas had a weaker association with land use, no 
strong association could be drawn between any land-use type and the distribution of posterior 
probability. 

 
The kappa coefficient was used to measure the amount of spatial agreement between the dissolved 
oxygen random subset response theme and the IAS FAVA response theme. The kappa coefficient 
between the response themes was calculated at 0.802 indicating that the overall agreement between 
the two response themes was almost perfect.  Additionally, conditional kappa values were calculated 
to determine the amount of agreement between each vulnerability class of the two response themes 
being compared.  Table 16 displays the kappa coefficient between each vulnerability class of the two 
response themes.  
 
According to Table 12, the conditional kappa values for the dissolved oxygen response theme and the 
IAS FAVA response theme indicated almost perfect agreement between the more vulnerable classes, 
substantial agreement between the vulnerable classes, and moderate agreement between the less 
vulnerable classes. The less vulnerable class in the IAS model was extremely small so a moderate 
agreement between these classes had little effect on the overall agreement between the maps.  
Approximately half of the less vulnerable area in the IAS FAVA response theme was overlain by the 
vulnerable class of the dissolved oxygen response theme causing the lower kappa value between these 
two classes and corresponding lower agreement level.  
 
The area-weighted Spearman’s Rank correlation coefficient for the IAS FAVA response theme and 
the dissolved oxygen response theme was calculated at 0.997 indicating a near-perfect positive 
correlation between the response themes.  This value corresponds to a level of confidence of 98% for 
the correlation of the two response themes.  
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Figure 58. Relationship between average total dissolved nitrogen median concentration data 
and posterior probability classes of the IAS response theme.  Note the positive correlation 
between increasing total dissolved nitrogen and posterior probability. 

 

 

 

 

Table 16. Conditional kappa coefficient values between the dissolved oxygen response theme 
and the FAVA response theme for the IAS model. Kappa coefficient values are reported 
between each vulnerability class.  

Agreement Conditional Kappa (Kf) values 

More Vulnerable Classes 0.961 

Vulnerable Classes 0.717 

Less Vulnerable Classes 0.482 
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Figure 59.  Relative vulnerability of the IAS divided into three zones based on posterior 
probability values using training point theme based on dissolved oxygen.  The same 
methodology used in the Results – FAVA Model Output was used herein to determine 
vulnerability class breaks. 
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Sensitivity and Validation of the FAS FAVA Model 
 

Random 75% Subset of Training Points (FAS) 
 
A subset of the FAS dissolved nitrogen training point theme was generated using a random selection 
process.  This random subset included 75% of the original wells for a total of 118 training points and 
yielded a prior probability of 0.0010.  Weights were then recalculated for each evidential theme, class 
breaks were selected, and a response theme was generated (Figure 60). The pattern of posterior 
probabilities was nearly identical to the original dissolved nitrogen response theme. 
 
The kappa coefficient was used to measure the amount of spatial agreement between the random 
subset response theme and the FAS FAVA response theme. The kappa coefficient between the 
response themes was calculated at 0.840 indicating that the overall agreement between the two 
response themes was almost perfect.  Additionally, conditional kappa values were calculated to 
determine the amount of agreement between each vulnerability class of the two response themes 
being compared.  Table 17 displays the kappa coefficient between each vulnerability class of the two 
response themes.  
 
According to Table 12, the conditional kappa values for the 75% subset response theme and the FAS 
FAVA response theme indicated almost perfect agreement between the more vulnerable and less 
vulnerable classes.  The kappa value for the vulnerable classes indicated substantial agreement 
between the two response themes.  A small area of the more vulnerable class from the subset response 
theme overlapped the vulnerable class causing the lower kappa value between these two classes and 
corresponding lower agreement level.  
 

Table 17. Conditional kappa coefficient values between the random 75% subset response theme 
and the FAVA response theme for the FAS model. Kappa coefficient values are reported 
between each vulnerability class. The asterisk indicates these values have been rounded. 

Agreement Conditional Kappa (Kf) values 

More Vulnerable Classes 1.000* 

Vulnerable Classes 0.611 

Less Vulnerable Classes 1.000* 

 
The area-weighted Spearman’s Rank correlation coefficient for the original FAS response theme and 
the random subset response theme was calculated at 0.985 indicating a very strong positive 
correlation between the response themes.  This value corresponds to a level of confidence of 99% for 
the correlation of the two response themes. 
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Figure 60.  Relative vulnerability of the FAS divided into three zones based on posterior 
probability values using a random 75% subset of the original dissolved nitrogen training point 
theme.  The same methodology used in the Results – FAVA Model Output was used herein to 
determine vulnerability class breaks.  
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Land Use vs. Posterior Probability (FAS) 

 
Zonal statistics were calculated to compare the statewide land use GIS coverage (compiled as 
described in Discussion – Model Validation Techniques) to the distribution of the posterior 
probability values for the FAS FAVA response theme (Figure 61).  Rangeland and barren land had 
slightly lower mean posterior probability values, but overall, no strong correlation was observed 
between any one type of land use and average posterior probability values.  With the exception of 
perhaps barren land, which represents 0.3% of the total land use in the study area, this generally 
indicated that land use was not influencing the distribution of the training point set, and, therefore, did 
not affect the response theme for the FAS FAVA model. 
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Figure 61. Land use plotted against posterior probability values in the FAS FAVA response 
theme. Though Rangeland and Barren Land areas have a slightly weaker association with land 
use, no strong association could be drawn between any land use type and the distribution of 
posterior probability. 

 
 
Dissolved Nitrogen Data versus Posterior Probability (FAS) 

 
Posterior probability values were compared with dissolved nitrogen dataset from which the training 
point theme was extracted.  Average dissolved nitrogen median concentrations for each posterior 
probability class in the response theme were plotted versus posterior probability values (Figure 62). 
As expected, a positive trend was observed between posterior probability and dissolved nitrogen 
values.  
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Figure 62. Relationship between average dissolved nitrogen median concentration data and 
posterior probability classes of the FAS response theme.  Note the positive correlation between 
increasing dissolved nitrogen and posterior probability. 

 
 

Using a Different Training Point Set (FAS) 
 
A training point set was developed for the FAS study area from wells measured for dissolved oxygen 
in the FDEP background water quality monitoring network.  Outliers were removed and statistical 
analysis returned a 75th percentile median value for dissolved oxygen concentration of 1.00 mg/L.  
There were 150 wells occurring in the dataset with a measured median dissolved oxygen value greater 
than 1.00 mg/L, which yielded a prior probability of 0.0012.  Using this dissolved oxygen training 
point set, a validation response theme was developed to compare to the dissolved nitrogen model.  
The same input themes were used, and weights were calculated for each theme.  The response theme 
is shown in Figure 63. The pattern of posterior probabilities was nearly identical to the original 
response theme.  
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Figure 63.  Relative vulnerability of the FAS divided into three zones based on posterior 
probability values using training point theme based on dissolved oxygen.  The same 
methodology used in the Results – FAVA Model Output was used herein to determine 
vulnerability class breaks.  
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The kappa coefficient was used to measure the amount of spatial agreement between the dissolved 
oxygen response theme and the FAS FAVA response theme. The kappa coefficient between the 
response themes was calculated at 0.811 indicating that the overall agreement between the two 
response themes was almost perfect.  Additionally, conditional kappa values were calculated to 
determine the amount of agreement between each vulnerability class of the two response themes 
being compared.  Table 18 displays the kappa coefficient between each vulnerability class of the two 
response themes. 
 

Table 18. Conditional kappa coefficient values between the dissolved oxygen response theme 
and the FAVA response theme for the FAS model. Kappa coefficient values are reported 
between each vulnerability class.  

Agreement Conditional Kappa (Kf) values 

More Vulnerable Classes 0.911 

Vulnerable Classes 0.607 

Less Vulnerable Classes 0.991 

 
According to Table 12, the conditional kappa values for the dissolved oxygen response theme and the 
FAS FAVA response theme indicated almost perfect agreement between the more vulnerable and less 
vulnerable classes.  The kappa value for the vulnerable classes indicated substantial agreement 
between the two response themes.  A small area of the more vulnerable class from the dissolved 
oxygen response theme overlapped the vulnerable class causing the lower kappa value between these 
two classes and corresponding lower agreement level.  
 
The area-weighted Spearman’s Rank correlation coefficient for the FAS FAVA response theme and 
the dissolved oxygen response theme was calculated at 0.997 indicating a near-perfect positive 
correlation between the response themes.  This value corresponds to a level of confidence of 99% for 
the correlation of the two response themes.   
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“Scientists can provide water-resource decision makers scientifically defensible 
information for the assessment of ground-water vulnerability and (or) intrinsic 

vulnerability.  To the extent that uncertainties in the assessment can be elucidated 
either qualitatively or quantitatively, the scientific defensibility and usefulness of the 

product will increase.” 
 

– Focazio, Reilly, Rupert and Helsel, 2002 
 

 
 
FAVA Maps: Data Limitations and Applications  
 
Although several qualitative and quantitative validation methods support the results of the FAVA 
maps, important factors exist regarding appropriate end-user application of the maps.  These factors 
involve understanding input-data resolution, missing data, model precision, and what the maps and 
associated statistics indicate regarding vulnerability at a given location.  
 
The FAVA maps reflect predictions based on scientific models.  These models were structured to 
represent interrelationships between relevant components of Florida’s hydrogeologic framework as 
they pertain to aquifer vulnerability.  Of critical importance to the accuracy of these predictive maps 
is the quality and type of data input into the model.  If data of poor quality (i.e., inaccurate or 
imprecise) is used in a model, output from the model will be of equally poor quality and thus of 
limited or no value.   
 
The response theme tables (Tables 8, 9, and 10) that were generated along with each aquifer system’s 
vulnerability map were useful in assessing the quality of data used as evidential themes. The contrast 
values reported in the response theme tables were used to rank the importance of the evidential 
themes and were used to indicate the quality of the evidential themes. Further, the response theme 
tables were also central in determining which evidential themes were most important to improve for 
future modeling. This was revealed by evaluating the significance of the weights (W1, W2….etc.) 
reported in these tables. These weights indicated which evidential themes were good predictors of 
training point locations (vulnerable areas). The response theme tables, in effect, help to demonstrate 
that some evidential themes could be improved to be better representations of reality or considered for 
removal from future modeling projects.  
 
A number of techniques have been employed to resolve many of the data gaps and inconsistencies 
within the statewide data coverages.  These approaches are described in Results – Data Coverages.  
For example, the technique to address missing soils data is discussed in Results – Data Coverages – 
Soil Drainage and Permeability.  In the sections that follow, aspects of data resolution and issues 
regarding data quality are presented and related to the FAVA model results.  The FDEP and the FGS 
are working together to address many of these issues. 
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Topography 
 
The FDEP DEM developed for the FAVA project was based on USGS 7.5-minute quadrangle maps.  
The accuracy of the FDEP DEM is therefore, in theory, as good as the maps on which it was based.  
Data quality and consistency issues related to the FDEP DEM stem from the method by which the 
FDEP DEM was created, as well as from the use of these 7.5-minute quadrangle maps as a data 
source. 
 
FDEP DEM elevation values have a ±5 feet or ±10 feet vertical accuracy, depending on whether a 5-
feet or 10-feet contour interval was used in the 7.5-minute quadrangle map.   
 
Coastlines used for a “zero line” (mean sea level) were taken from 1:40,000 Florida Marine Research 
Institute datasets.  In some areas, the scale difference between the inland contours (at 1:24,000) and 
the shoreline created contour overlaps.  
 
When developing the 7.5-minute quadrangle maps, the USGS generally displayed levees 
preferentially over the display of contour lines.  Interpolation in these areas was completed, where 
possible, to determine the contour line path over the levee.  In some areas, however, the amount of 
error potentially involved in choosing one of many possible routes for a contour line resulted in 
termination of the contour at the levee.  In these cases, contour lines were appropriately flagged so 
they could be omitted from the final digital topographic grid interpolation which was used to generate 
the FDEP DEM. 
 
Quality assurance on the NWFWMD digital contour line work had not been completed at the time 
FGS acquired the data.  Misattribution of many digital contour lines was evident.  Contour line data 
from this region continue to be corrected and cleaned; however at the time this report was written, 
some minor errors still exist in the NWFWMD area of the FDEP DEM. In northeastern Florida, 
quadrangles 4714 (Bostwick) and 4814 (Green Cove Springs) are both comprised of contour lines 
which were surveyed in 1949.  Although they were resurveyed for the 1991 map, the new contour 
lines have not been re-digitized, and thus not used in the FDEP DEM presented herein. 
 
To create a DEM for the entire State, interpolated elevation decimal values were truncated during the 
process of edge-matching multiple digital maps.  On FDEP DEM visualizations, this yields a stair-
step appearance where one elevation value meets another in low relief areas.  During development of 
the FDEP DEM, errors were present in the Everglades region due to a lack of contour lines; most of 
the relief in the Everglades varied less than five feet and much of the higher elevations are 
anthropogenic in origin (e.g., an interstate overpass, or levee).   
 
The FDEP DEM contains flat surfaces for hilltops and depressions because hilltops and depressions 
were not attributed. The flat surfaces are a relic of the TIN method used to generate the grid. It was 
not within the project scope and timeline to interpolate the digital elevation between the uppermost 
contour line on a hilltop and the true hilltop elevation; the same applies for topographic depressions.   
 
The FDEP DEM was a major factor in the development of all the evidential themes excluding soil 
permeability. This is shown by the higher contrast values reported for the evidential themes based on 
topography in the response theme tables generated during modeling. The quality of the FAVA 
response themes are, as a result, very dependent on the accuracy and quality of the FDEP DEM data.  
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Karst Features 
 
In the WofE – FAVA model, a modified closed topographic depressions coverage served as the proxy 
for karst feature density. This method of identifying karst may have overestimated the number of 
features that actually meet the definition of karst. For example, parts of dune fields appeared on 
topographic maps as depressions. In addition, storm-water ponds and berms around agricultural fields 
appeared as topographic depressions. Some of these types of features were included in the closed 
topographic depressions coverage; as a result, non-karst depressions were included in the 
development of a karst coverage. Many of these “false positive” features, however, were eliminated 
through spatial filtering prior to input into the IAS and FAS FAVA models.  
 
Another aspect of the closed topographic depressions coverage pertains to the data source: USGS 7.5-
minute quadrangle maps.  These maps were originally created between 1953 and 2002.  It is likely 
that thousands of sinkholes have occurred in recent decades, yet they are not reflected on the 
topographic maps.  Alternatively, the sinkholes may never have been identified during the 
topographic map-making process because of the limited resolution of the maps.  For example, 
implementation of a recently developed light detection and ranging (LIDAR) coverage for Alachua 
County (2002) allowed the detection of numerous sinkholes not represented on USGS topographic 
maps.  Figure 64 is a comparison of the Rochelle 7.5-minute quadrangle map (last revised in 1993) to 
the LIDAR imagery.  Blue polygons representing closed topographic depressions of the LIDAR data 
greatly outnumber the closed topographic depressions, shown as red hachured contour lines, of the 
7.5-minute quadrangle maps.  The LIDAR data has a resolution of approximately two feet. The red 
hachured depressions which are not also represented by blue polygons of the LIDAR data may be the 
result of inaccurately located depressions during development of the 7.5-minute quadrangle map.  
 
More than 2,600 sinkholes are recorded in the FGS sinkhole database (FGS, 2004); however, the 
database contains only sinkholes that have been reported. Further, the sinkhole database is also biased 
towards population centers – there is a strong correlation between reported sinkholes and built-up 
urban areas. Moreover, the FGS sinkhole database provides only locations (points), whereas the 
closed topographic depressions coverage applies polygons (i.e., areas of sinkholes).  As a result, the 
FGS sinkhole database could not be represented in the closed topographic depressions coverage 
unless significant assumptions regarding sinkhole size and depth were made.  A comparison of the 
FAVA closed topographic depressions coverage and the FGS sinkhole database (Figure 65) reveals 
that the area of western Polk and eastern Hillsborough counties are under-represented in the FAVA 
model with respect to karst.  On the FAVA maps, these areas could be more vulnerable to 
contamination than what was indicated by the response themes.  
 
The response theme tables indicated that proximity to karst was the most important evidential theme 
in the IAS (proximity to karst/IAS overburden thickness evidential theme) and third most important 
theme in the FAS FAVA model. Further, the absolute value of the negative weight (W2) for both IAS 
and FAS FAVA models was much higher than the positive weight (W1). This indicated that the 
evidential theme was a better predictor of where training points would not occur and a weaker 
predictor of where training points would occur. In other words, proximity to karst was a better 
predictor of where less vulnerable areas occurred as opposed to where more vulnerable areas 
occurred.  Improving this theme by addressing some of the above-mentioned limitations and potential 
problems could result in this evidential theme being a better predictor of vulnerable areas in future 
model iterations.  
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Figure 64. Closed topographic depressions extracted from the Rochelle 7.5-minute quadrangle 
map used to develop the FDEP DEM overlain on the Alachua County LIDAR data. Alachua 
County LIDAR data contour interval is approximately two feet.  
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Figure 65. Comparison of closed topographic depressions (extracted from the FDEP DEM 
based on USGS 7.5-minute quadrangles) with sinkhole locations in the FGS sinkhole database 
(FGS, 2003). The map demonstrates that some sinkhole-prone areas are not well represented by 
the topographic depression coverage. 
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Depth-to-Water and Hydraulic Head Difference 
 
Stream and lake water levels were extracted from 1:100,000 scale maps, however, contour lines used 
in the development of the depth-to-water layer were taken from 7.5-minute (1:24,000) quadrangle 
maps.  As a result of these differing resolutions, errors occurred when assigning digital elevation 
values to some surface water bodies.  In addition, the relation between depth-to-water and 
physiographic province may be inconsistent if a leaky IAS exists within a ridge or upland.  Vertical 
uncertainty in the depth-to-water evidential theme averages approximately seven feet, with a 
maximum error ranging from -34 feet to +31 feet (Table 5, Results – Data Coverages – Water-Table 
Elevation). 
 
The potentiometric head difference coverage was created by subtracting the FAS “pre-development” 
potentiometric surface (Johnston et al., 1980) from the depth-to-water.  The pre-development surface 
was produced from limited data and is therefore not as highly resolved as more recent potentiometric 
maps.  In consideration of the vertical uncertainty in the depth-to-water surface and the Johnston et al. 
(1980) map, the hydraulic head difference has an estimated uncertainty on the order ± 17 feet. 
 
As indicated by the contrast values included in the response theme tables, depth-to-water was the 
second most important evidential theme in the SAS FAVA model. Likewise, hydraulic head 
difference ranked second most important in the FAS FAVA model. Further, the absolute value of the 
negative weight (W2) for both evidential themes in both the SAS and FAS FAVA models was much 
higher than the positive weight (W1). This indicated that these evidential themes were better 
predictors of where training points would not occur and a weaker predictor of where training points 
would occur. In other words, depth-to-water and hydraulic head difference were both better predictors 
of where less vulnerable areas occurred as opposed to where more vulnerable areas occurred. 
Improving these themes by addressing some of the above-mentioned limitations and potential 
problems could result in the themes being better predictors of vulnerable areas in future modeling 
projects.  
 
 

Soils  
 
STATSGO soils data were used for Washington, Holmes, Taylor, Liberty Counties and the 
Everglades because SSURGO data for these areas was incomplete.  Disturbed lands such as dumps, 
pits, urban land and water were either not mapped or were assigned “no data” values because of the 
absence of data.  Permeability values of these “no data” areas were interpolated using GIS 
neighborhood statistics.  The NRCS (2002) states “Since measurements are difficult to make and are 
available for relatively few soils, estimates of permeability are based on soil properties.”  In other 
words, the NRCS assigned many soil types to permeability classes based on soil structure, clay 
content, etc, and then assigned estimated permeability values to the classes.  The permeability of 
some soils was based on actual measurements taken from representative soil profiles (pedons).  For 
each of these selected soil types, generally less than five pedons were measured, and their 
characteristics are taken to represent every occurrence of that particular soil type throughout the State 
(USDA, 1951). 
 
In the development of the permeability data layer for the FAVA project, the NRCS weighted average 
of the permeability values for each layer in a given soil profile were calculated.  Further, in 
calculation of the weighted average permeability of each soil type, the entire soil pedon column (or 
the entire column of estimated permeability) was used rather than attempting to intersect the column 
thickness with the depth-to-water for that location.  If the depth-to-water was intersected with the 
representative soil columns, some soil layers would not be used in the permeability calculation and 
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thus the values would change.  This difference could significantly change the permeability values in 
the soils evidential theme for use in the SAS FAVA model.  However, accomplishing this water-soil 
column intersection would produce questionable results at best because the depth-to-water data 
coverage was not of high enough resolution, and the difficulty of completing this intersection was 
beyond the scope of this project.  
 
As indicated by the contrast values included in the response theme tables, soil permeability was the 
most important evidential theme in the SAS FAVA model, whereas soil permeability was the least 
important evidential theme in both the IAS and FAS FAVA models. This is to be expected as soil 
characteristics are generally assumed to have greater impact on SAS vulnerability as it is contiguous 
with land surface and less of an influence on deeper aquifer systems. The absolute value of the 
negative weight (W2) for soil permeability in both the SAS and IAS FAVA models was much higher 
than the positive weight (W1) indicating that this evidential theme was a better predictor of where 
training points would not occur and a weaker predictor of where training points would occur (i.e., a 
better predictor of where less vulnerable areas occurred). For the FAS FAVA model, the absolute 
value of the positive weight (W1) for soil permeability was much higher than the negative weight 
(W2) indicating that this evidential theme was a better predictor of where training points would occur 
and a weaker predictor of where training points would not occur (i.e., a better predictor of where 
more vulnerable areas occurred). Improving these themes by addressing some of the above-mentioned 
limitations and potential problems could result in the evidential themes being better predictors of 
vulnerable areas in future modeling projects.  
 
 

Thickness of Overburden on IAS and Thickness of the IAS 
 
These layers were created from well data that is based on well samples from the FGS well database 
and the NWFWMD well database. The wells were chosen for input into a database if they penetrated 
the top of the IAS or the top of the FAS or both. Surfaces developed with these data points were then 
used to calculate hydrostratigraphic unit thicknesses. 
 
Locational information for generally older wells may be limited to a “center of section” designation. 
Further, aquifer and formational picks, especially if based on well cuttings samples alone, can have an 
error of up to ±20 feet depending on the interval of the well cuttings descriptions. Finally, the surfaces 
created based on well data are much less reliable in areas lacking in well data, such as the Everglades 
where few wells have been drilled.  Comparisons of well data with interpolated grid cell values 
revealed the surface of the IAS and FAS have standard deviations of 9 feet and 2 feet, respectively.  
Data from 1,346 wells contributed to the development of the IAS thickness model.  The extent of the 
IAS, as defined in this report, covers an area of approximately 45,400 square miles.  As a result, each 
well is taken to represent 33 square miles in the IAS thickness map.  It should be noted however, that 
this value is an average statewide well density; some areas are much better represented with wells, 
while others are very poorly represented and have a much smaller well density (e.g., the Everglades 
area).   
 
As indicated by the contrast values included in the response theme tables, IAS thickness was the 
single most important evidential theme in the FAS FAVA model. Likewise, IAS overburden 
thickness (proximity to karst/IAS overburden evidential theme) ranked as the most important in the 
IAS FAVA model. Additionally, the absolute value of the negative weight (W2 for IAS, and W3 for 
FAS) for both evidential themes in both the IAS and FAS FAVA models was much higher than the 
positive weight (W1). This indicated that these evidential themes were better predictors of where 
training points would not occur and a weaker predictor of where training points would occur. In other 
words, IAS thickness and IAS overburden thickness were both better predictors of where less 
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vulnerable areas occurred as opposed to where more vulnerable areas occurred. Improving these 
themes by addressing some of the above-mentioned limitations and potential problems could result in 
the themes being better predictors of vulnerable areas in future model considerations.  
 

Extent of IAS as Confining Unit 
 
The extent of the IAS was based on FGS and NWFWMD well data and the geologic map of the State 
of Florida (Scott et al., 2001). It was based on relatively continuous geologic formations officially 
recognized as part of the IAS. These formations are listed in Table 6. The IAS extent does not include 
localized basal SAS confinement that may or may not be laterally continuous.  Though these 
sediments do provide effective confinement to the underlying FAS in various localized settings, such 
mapping detail was not required by the WofE technique or possible within the scope of the FAVA 
project. Further refinement of the IAS in areas of little or no confinement would not be relevant to the 
FA.  
 
 

Anthropogenic Features Affecting Topography and Water Quality 
 
Although the FAVA response themes are based on data coverages (evidential themes) characterizing 
the natural system, some anthropogenic features can affect natural hydrologic or hydrogeologic 
characteristics of the aquifer systems.  The features can “override” the predicted results of relative 
vulnerability.  Storm-water ponds are currently not accounted for in the FAVA model.  If these 
structures are poorly designed or maintained, or become damaged (i.e., penetrated by a sinkhole), 
ground-water vulnerability may be affected.  The features may become sites of preferential pathways 
into the aquifer system.  Rapid infiltration basins are sites that promote localized aquifer recharge and 
perhaps should be addressed in the FAVA model similar to closed topographic depressions.  A 
complete statewide coverage of these features, however, was not available at the time of this study.  
Pumping near municipal well fields can change local hydrogeologic conditions to the extent that 
recharge is induced.  In these localized areas, results of FAVA modeling may under-predict 
vulnerability.  To provide a broad representation of where these well fields have most significantly 
affected the FAS potentiometric surface, an image was used from Bush and Johnston (1988) which 
depicts areas that have experienced significant net decline in the potentiometric surface. These areas 
are included in Figure 66 to show other areas where vulnerable areas might be under-predicted. 
 
Mined areas and reclaimed areas (Figure 66) also create potential issues for the accuracy of the 
FAVA maps because in some cases, the mining activities have thinned or removed the confinement, 
increasing aquifer vulnerability in those areas.  In addition, contour lines on 7.5-minute quadrangle 
maps generally stop at mined areas making it difficult to calculate accurate thicknesses for evidential 
themes such as IAS thickness and overburden.  Soils in mined areas are reworked and have no 
assigned permeability values.  During FAVA modeling, permeability values in mined areas (or other 
disturbed lands, such as municipal areas) were interpolated using the nearest neighbor selection 
method. 
 
Drainage wells are also constructed features that affect local recharge and therefore vulnerability.  
During the FAVA project, an attempt was made to compile drainage well locations (Figure 66), 
however, the coverage is not complete because the information regarding the installation and location 
of many of these wells is not publicly recorded or otherwise available.  Similar to reasons for 
excluding the FGS sinkhole database, the drainage well coverage was not suited as an evidential 
theme in the WofE – FAVA models because assumptions would have to be made about area of 
influence, depth of penetration, and a potentially large amount of missing data.  Figure 66 is provided
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Figure 66. Summary of features that may have caused under-representation of vulnerability in 
the FAVA maps: Drainage wells, known mines, areas representing significant (greater than 20 
ft) differences between the FAS pre-development and recent (1980s) potentiometric surfaces, 
sinkholes not represented by closed topographic depressions. Location of mines is a point theme 
and does not accurately represent the actual areas of the mined areas.  
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as a map to be used together with FAVA maps to represent localities where the FAVA results may 
have under-predicted vulnerability. 
 
 

Application of the FAVA maps 
 
Appropriate use of the FAVA maps may not be readily apparent given the large amounts of data on 
which the maps were based, the modeling technique used, the qualitative and quantitative validation 
of the results, the oversight of the entire project by technical experts, and the obvious limitations of 
the data (including missing data).  The purpose of this section is to address the question of how one 
should use the maps.  Much of the answer to this question is related to resolution.  In the FAVA 
maps, the finer detail in the vulnerability patterns of the response themes is directly related to the 
detail of some of the evidential themes (e.g., soil permeability, effective karst features).  In the IAS 
and FAS FAVA maps, the coarser, more obvious patterns are related to overburden or confinement 
thickness.   
 
Close inspection of the FAVA maps in their digital form revealed that some of the predicted 
vulnerabilities are as small as a single grid cell (i.e., 30 m2) in the response theme.  Technically 
speaking, this cell size dictates that the resolution of the FAVA maps is 30 m.  This value is based on 
the resolution of the most highly resolved evidential theme, which is soil permeability (see Results – 
Data Coverages – Soil Drainage and Permeability for further explanation).  All evidential themes – 
including IAS thickness, despite having originated from less detailed resolutions – were required to 
be re-sampled to a consistent 30-m grid cell size resolution for input into the WofE models (it is 
important to note, however, that the data were not changed during this process, just the number of 
grid cells). 
 
One may ask if land use or environmental management decisions can be made based on a unit cell 
(30 m by 30 m) of the FAVA map. Although the resolution of some evidential themes is 30 m2, the 
answer to this question is “no.”  If a unit cell of the FAVA response theme differs in predicted 
vulnerability as compared to nearby cells, the difference is real and is based on real hydrogeologic 
evidence, such as a nearby closed topographic depression or a change in soil permeability.  On the 
other hand, it is important to keep in mind the limitations in the data.  For example, interpolation of 
soil properties are made statewide based on few site specific observations and/or measurements.  
Another degree of uncertainty pertains to the closed topographic depression features: not all closed 
topographic depressions are karst related, and even if one assumes they are, many different types of 
karst exist.  One closed topographic depression may reflect a clay-filled sinkhole that reduces the 
vulnerability of the underlying aquifer system, whereas another closed topographic depression may be 
a karst window, which can maximize the underlying aquifer system vulnerability.  
 
Another consideration when evaluating the results of WofE – FAVA models pertains to the training 
point data set.  As described in Results for each aquifer system, either dissolved nitrogen or total 
dissolved nitrogen was applied as training point data.  Strictly speaking the WofE – FAVA response 
themes are “specific vulnerability” maps because they reflect the probability of aquifer vulnerability 
to nitrogen.  If dissolved oxygen had been used as the primary training data set, the maps would 
specifically reflect the probability of aquifer vulnerability to dissolved oxygen.  In either case, both of 
these parameters are considered appropriate surrogates for vulnerability.   
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 Whether using the FAVA response themes in Figures 31, 39, and 49 or Plates 1, 2 and 3, suggestions 
by the authors regarding guidelines for applications are the same.  To recap, the FAVA maps were 
developed from a wide range of data-coverage resolutions, both vertically and horizontally, and in 
this report the known strengths and weaknesses of the input data (evidential themes) are described, as 
well as knowledge of data not represented in the FAVA models.  In consideration of these factors, we 
suggest that the FAVA maps be used at scales of sufficient size to preclude the comparison of 
individual parcels to the FAVA response themes.  For example, use of a scale of 1:200,000 or smaller 
(i.e., 1:500,000) is suggested.  Plates 1, 2 and 3 are provided at a scale of 1 inches = 20 miles 
(1:1,267,200). 
 
For those with a need to apply these statewide FAVA maps at the local scale, we suggest application 
greater than or equal to one square mile (~2.5 km2).  Again, this is not to imply that results less than 
that area are meaningless; on the contrary.  Every 30-m grid cell has significance as discussed above; 
however, this is a predictive model and the authors make no assumption that all input layers are 
accurate or precise or even complete at that scale.  Application of the FAVA maps does not replace 
the need for site-specific studies. 
 
One may suggest that the maps should be generalized to a resolution that would not allow end-users 
to see detail finer than the recommended scale.  This generalization however would have the negative 
effect of masking areas of higher vulnerability and would not allow the end-user to see meaningful 
patterns in the maps.  Rather than coarsen the resolution of the FAVA maps, they are presented in the 
best possible and most scientifically and technically defensible level of resolution.  In a sense, the 
maps are as accurate as the most detailed input layer, and as inaccurate as the least detailed layer.  For 
example, the wells used to define the IAS thickness represent, on average, about 40 mi2. For several 
reasons already discussed, this does not at all imply the maps should only be used at that scale. 
Accuracy of the maps is not sufficient for evaluating aquifer vulnerability at a specific location.  It is 
the responsibility of the end-users of these maps to determine specific and appropriate applications of 
these maps. 
 
Standing surface water bodies are also highly vulnerable to contamination; however those waters do 
not reflect waters residing in an aquifer system.  Instead, those waters reside “on” an aquifer system.  
Due to the geostatistical framework and evidential layers (spatial hydrogeological data) of FAVA, 
aquifer systems near point or diffuse (i.e. seeps) discharge areas were sometimes predicted by the 
output model to be low in vulnerability, even though the discharging surface waters are highly 
vulnerable to contamination.  Those discharging waters are not part of the aquifer, although they 
originate from it.  The FAVA project was designed to focus on the ability for a contaminant to travel 
through soils, overburden, karst features, etc. to enter into the aquifer system.  As a result, it is very 
important that the FAVA model never be applied to assess contamination of surface waters or 
ground-water discharge areas, such as seeps or springs.  Major water bodies are included as overlays 
on the FAS and IAS FAVA generalized maps (Plates 2 & 3) and all water bodies (wetlands included) 
are shown as map overlays on the SAS FAVA map (Plate 1). 
 
Application of these maps may be useful to meet the requirements of Florida codes and laws, such as 
Comprehensive Plan requirements described in Rule 9J-5.005(2)(c), F.A.C. for purposes of defining 
and mapping high aquifer recharge areas as required by 163.3177(6)(c) F.S.  The latter states that the 
Comprehensive Plan should include a “…natural groundwater aquifer recharge element correlated to 
principles and guidelines for future land use, indicating ways to provide for future potable water, 
drainage, sanitary sewer, solid waste, and aquifer recharge protection requirements for the area.”   
163.3177(6)(c) F.S. further states “The element shall also include a topographic map depicting any 
areas adopted by a regional water management district as prime groundwater recharge areas for the 
Floridan or Biscayne aquifers, pursuant to s. 373.0395.  These areas shall be given special 
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consideration when the local government is engaged in zoning or considering future land use for said 
designated areas.”  Moreover, in Chapter 373.0395 F.S., it states: “Each water management district 
shall develop a groundwater basin resource availability inventory covering those areas deemed 
appropriate by the governing board. This inventory shall include, but not be limited to, the following: 
(1) A hydrogeologic study to define the groundwater basin and its associated recharge areas.  (2) Site 
specific areas in the basin deemed prone to contamination or overdraft resulting from current or 
projected development.  (3) Prime groundwater recharge areas...”  The FAVA maps are also relevant 
to aspects of the EPA Source Water Assessment Program (SWAP) and the Safe Drinking Water Act, 
for which the FAVA method may be applied to refine “critical aquifer protection areas.” 
 
In addition to the potential applications related to Florida law, the FAVA maps have valid and useful 
applications in the following areas of environmental management, protection and conservation as well 
as in land-use planning: 
 

• Wellhead protection 
• Source-water protection 
• Recharge protection 
• Vulnerability indices 
• Contaminant-specific maps 
• Land conservation acquisition 
• Total maximum daily loads (TMDLs) 
• Surface-water–ground-water interactions 
• Precursors to susceptibility predictions 
• Water-quality management tool 
• Resource planning strategies and policies 
• Prioritization of areas of critical concern 
• Design of monitoring plans 
• Best Management Practices 

 
 
Disclaimer 
 
The FAVA maps were developed by the FDEP/FGS to carry out agency responsibilities related to 
management, protection, and responsible development of Florida's natural resources. Although efforts 
have been made to make the information in these maps accurate and useful, the FDEP/FGS assumes 
no responsibility for errors in the information and does not guarantee that the data are free from errors 
or inaccuracies. Similarly FDEP/FGS assumes no responsibility for the consequences of inappropriate 
uses or interpretations of the data on these maps. As such, these maps are distributed on an "as is" 
basis and the user assumes all risk as to their quality, the results obtained from their use, and the 
performance of the data. FDEP/FGS further makes no warranties, either expressed or implied as to 
any other matter whatsoever, including, without limitation, the condition of the product, or its 
suitability for any particular purpose. The burden for determining suitability for use lies entirely with 
the user. In no event shall the FDEP/FGS or its employees have any liability whatsoever for payment 
of any consequential, incidental, indirect, special, or tort damages of any kind, including, but not 
limited to, any loss of profits arising out of use of or reliance on the maps or support by FDEP/FGS. 
FDEP/FGS bears no responsibility to inform users of any changes made to this data. Anyone using 
this data is advised that resolution implied by the data may far exceed actual accuracy and precision.   
 
Comments on this data are invited and FDEP/FGS would appreciate that documented errors be 
brought to the attention of our staff.  Because part of this data was developed and collected with U.S. 
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Government and/or State of Florida funding, no proprietary rights may be attached to it in whole or in 
part, nor may it be sold to the U.S. Government or the Florida State Government as part of any 
procurement of products or services. 
 
 

Sub-regional FAVA Modeling  
 
During the course of the FAVA project, there have been requests for preliminary results of the maps 
at the scale of a county.  While the FAVA maps herein are certainly useful at this scale, the smaller 
the area of interest, the more evidence required to create higher-resolution FAVA maps.  If FAVA 
maps were to be generated at the scale of a county or springshed, or a need exists to apply FAVA 
results at the sub-kilometer level, several additional evidential themes may be required, as well as the 
need to refine existing evidential themes.  Moreover, application of models designed for the field 
scale such as SEAMS may become more appropriate. Potential local-scale refinements and additions 
include, but are not limited to the following: 
 

• use of LIDAR data rather than the FDEP DEM to define surface topography, 
• subdivision of closed topographic depressions into different classes (i.e., water-filled 

sinkholes, possible sinkholes, karst windows, cover-collapse sinkholes, etc.), 
• application of combinations of soil properties, 
• addition of more data on which evidential themes (i.e., IAS thickness and extent, water-table 

elevation etc.) are based to improve resolution, 
• addition of more wells in the training data set, 
• use of a different training set analyte, such as dissolved oxygen or tritium, 
• use of results of lineament studies, and  
• cave maps, and 
• refinement of training point data sets to include only averages of water quality analytes 

collected during the dry season. 
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“… a key starting point for assuring a sustainable future for any ground-water system 

is the development of a comprehensive hydrogeologic data base over time.” 
 

– Alley, Reilly and Franke, 1999 
 

 
 
 
CONCLUSIONS 
 
All aquifer systems in Florida are vulnerable to contamination due to the natural hydrogeologic 
setting or human influences that modify the natural system, such as mining, urban development and 
agriculture.  Other anthropogenic factors can increase vulnerability in certain areas due to the 
installation of large impermeable barriers (i.e., parking lots that runoff into areas of potentially 
focused recharge), poorly constructed wells and drainage wells, retention ponds and rapid infiltration 
basins, poor land-use practices, and activities that can induce sinkhole formation.  Recognizing the 
need for a science-based, defensible, flexible resource on which to base environment 
protection/conservation and growth management decisions, the FAVA project was initiated.  The 
FAVA project provides statewide maps that predict relative aquifer vulnerability for Florida’s three 
principal aquifer systems: the Surficial Aquifer System, Intermediate Aquifer System, and Florida 
Aquifer System. 
 
The FAVA project was designed with the end-user in mind.  With the help of a multi-agency 
Technical Advisory Committee (TAC) that provided a broad range of expertise and resources to the 
project, a set of characteristics for the FAVA project was developed which required any modeling 
effort to be: 
 

• Scalable 
• Updateable 
• Flexible 
• Easy to understand 
• Easy to apply 
• Scientifically defensible 

 
While most of these requirements were met, the modeling technique is admittedly not readily easy to 
understand. On the other hand, the final FAVA maps are, in fact, easy to understand. Several 
modeling approaches were considered for the development and validation of the FAVA maps.  
Bayesian statistics, specifically utilizing WofE (Raines et al., 2000) in a GIS platform, in combination 
with fuzzy logic and logistic regression were applied to the input data.   When applying this 
technique, much of the subjectivity and potential bias inherent in many models is removed.  
Moreover, by applying the WofE model, the results are in a sense, self-validated.  This, however, 
does not take the place of further model validation, which was extensively performed for each model 
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output.  Application of the WofE technique also allowed the FAVA project to provide “specific 
vulnerability” maps that are contaminant specific.  For example, because nitrogen is used in the 
training data set, the FAVA maps are technically vulnerability maps with respect to surface sources of 
nitrogen.  But because nitrogen (i.e., dissolved nitrates, nitrites and ammonia) is adopted herein as a 
conservative indicator of contamination potential, the FAVA maps provide estimates of intrinsic 
vulnerability (i.e., any contamination in general; Focazio et al. 2002).  Although Bayesian statistics 
have been applied to ground-water resource studies, the WofE model has never before been applied to 
assess aquifer vulnerability, with possible exception of Cheng (2004), who applied WofE to assess 
characteristics of flowing wells. 
 
Large amounts of data were processed and utilized in order to generate the FAVA maps.  These data 
sets not only have limitations with respect to resolution, accuracy and completeness, but many also 
reflect a mere snapshot in time.  Consequently, the FAVA maps are time-sensitive; as new data 
become available, the FAVA maps should be periodically revised.  The frequency of this revision 
may serve well to correspond with program needs within the State of Florida.  For example, the FDEP 
“Ground water basin rotation” cycles every four years, and the Water Management District’s 
Regional Water Supply plans are revisited every five years.  Periodic updates (e.g. every four to five 
years) of the FAVA maps will strengthen the accuracy and value of the FAVA response themes as 
predictive tools.  
 
Within this report, aquifer vulnerability maps represent probabilities of vulnerability.  These 
probabilities have been separated into three categories of relative vulnerability: less vulnerable, 
vulnerable and more vulnerable.  These three-class vulnerability maps are provided as a resource for 
science-based decision making; the development of rules or establishment of policies regarding 
environmental conservation, protection, and land-use planning.  
 
Several valuable derivative data coverages were developed throughout the course of the FAVA 
project, including: 
 

• FDEP DEM seamless statewide topography at a 15-m resolution; applications include slope 
calculations, more accurate delineation of drainage and drainage basins, identification of land 
subsidence primarily due to karst processes, 3D visualizations, etc. 

• Depth-to-water table – a derivative product of the FDEP DEM; applications include a 
resource for well drilling, hydrologic models, estimation for recharge and discharge areas. 

• Closed topographic depressions – a derivative product of the FDEP DEM; applications 
include estimation of karst feature densities per unit area, buffer zones, sinkholes that 
penetrate underlying confinement and those that intersect the water table. 

• Thickness and extent of IAS; applications in hydrogeologic framework studies, water 
resource assessment and protection, ground-water modeling. 

• Seamless soil characterization of permeability and drainage; nearly statewide data for 
application in local scale vulnerability assessments, agriculture, etc. 

• Hydraulic head difference between the water table and the FAS; applications include 
estimation of recharge and discharge areas of the FAS. 

• Extents of Florida’s principal aquifer systems; applications in hydrologic and hydrogeologic 
models, land-use planning, consumptive use and water-resource protection. 

• Overburden on the IAS (as defined in this study); applications include consumptive use and 
water-resource protection. 

• Environmental geology; applications include characterization of the geologic material present 
just below the soil horizon unsaturated to a depth of expected use, material for mineral 
resource identification, and localized vulnerability studies. 
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While not recharge maps per se, FAVA maps may be considered probability-based recharge models 
(i.e., proxy for recharge maps) that consider characteristics of the hydrogeological framework as well 
as ambient water quality data.  It is important to note that the FAVA project response themes are not 
contaminant-transport or susceptibility models.   
 
Appropriate application of the FAVA maps is important and is discussed thoroughly in this report.  In 
general, it is recommended that the maps should be applied at scales smaller than 1:200,000 thereby 
eliminating the ability to compare relative probability values to individual land parcels.  On the other 
hand, much of the data on which the maps were based are accurate to the minimum GIS grid-
resolution of the FAVA maps (30 m).  Use of the maps at that scale is not suggested, however, 
application of the maps on the order of one square mile may be appropriate as long as conditions 
outlined in Discussion – Disclaimer are met.  Most importantly, the FAVA maps are not of sufficient 
detail to provide site specific information regarding relative aquifer vulnerability. 
 
This project and the vulnerability maps provided herein underscore the importance of the need to 
further our understanding of Florida’s aquifer systems, both in terms of hydrogeologic data and 
ambient (or background) water quality data.  As our knowledge increases regarding Florida’s natural 
and highly complex hydrogeologic systems, so does our ability to serve as better stewards of these 
precious resources. 
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APPENDIX I – GLOSSARY 
 
Binary – Refers to the generalization or simplification of evidential themes or data layers.  Binary 

layers are reclassified from the original dataset into presence/absence type themes or two 
classes. 

 
Conditional Independence – when an evidential theme does not affect the probability of another 

evidential theme.  Evidential themes are considered independent of each other if the 
conditional independence value calculated is within the range 1.00 ± 0.15 (Raines, personal 
communication, 2003).  Values that significantly deviate from this range can over inflate the 
posterior probabilities resulting in unreliable response themes. 

 
Confidence – A measure based on the ratio of posterior probability to its estimated standard 

deviation. 
 
Contrast – W+ minus W- (see weights), which is an overall measure of the spatial association 

(correlation) of an evidential theme with the training points. 
 
Cumulative Ascending – Calculates the cumulative weights from the first class to the last class while 

increasing the area.  Areas nearest a training point have a stronger association, and those 
farthest away have a weaker association.  This method is applicable for themes where the 
training points are mainly associated with the lower values of the evidential theme (e.g., 
higher vulnerability correlates with lower confinement thickness). 

 
Cumulative Descending – Calculates the cumulative weights from the last class to the first class while 

increasing the area (opposite of cumulative ascending).  This method is applicable for themes 
where the training points are mainly associated with the higher values of the evidential theme 
(e.g., higher vulnerability correlates with higher soil permeability). 

 
Evidential Theme – A set of continuous spatial data that is associated with the location and 

distribution of known occurrences (i.e., training points); map layers used as predictors of 
vulnerability. 

 
Extent – the amount of space or surface area that something occupies or the distance over which it 

extends. 
 
Model – The characteristics of a set of training points, and the relationships of the training points to a 

collection of evidential themes. 
 
Posterior Probability – The probability that a unit cell contains a training point after consideration of 

the evidential themes.  This measurement changes from location to location depending on the 
values of the evidence. 

 
Prior Probability – The probability that a unit cell contains a training point before considering the 

evidential themes.  Normally it is assumed to be a constant over the study area equal to the 
training point density (total number of training points divided by total study area in unit 
cells). 

 
Response Theme – An output map that displays the probability that a unit area contains a training 

point, estimated by the combined weights of the evidential themes.  The output is displayed in 
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classes of relative aquifer vulnerability or favorability to contamination (i.e., this area is more 
vulnerable than that area) or favorability.  

 
Spatial Data – Information about the location and shape of, and relationships among, geographic 

features, usually stored as coordinates and topology. 
 
Studentized Contrast (Confidence of evidential theme) – contrast divided by its estimated standard 

deviation; provides a useful measure of significance of the contrast. 
 
Study Area – A grid theme that acts as a mask to define the area where the model is developed and 

applied.  It may be irregular in outline and may contain interior holes (e.g., lakes and no data 
areas). 

 
Training Points – A set of locations (points) reflecting a parameter used to calculate weights for each 

evidential theme, one weight per class, using the overlap relationships between points and the 
various classes.  In an aquifer vulnerability assessment, wells with water quality indicative of 
high recharge are potential known occurrences. 

 
Vulnerability – the tendency or likelihood for contaminants to reach the top of the specified aquifer 

system after introduction at land surface based on existing knowledge of natural 
hydrogeologic conditions. 

 
Weights – A measure of an evidential-theme class.  A weight is calculated for each theme class.  For 

binary themes, these are often labeled as W+ and W-.  For multiclass themes, each class can 
also be described by a W+ and W- pair, assuming presence/absence of this class versus all 
other classes.  Positive weights indicate that more points occur on the class than due to 
chance, and the inverse for negative weights.  The weight for missing data is zero.  Weights 
are approximately equal to the proportion of training points on a theme class divided by the 
proportion of the study area occupied by theme class, approaching this value for an infinitely 
small unit cell. 
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APPENDIX II – SAMPLE METADATA: DIGITAL ELEVATION MODEL 
 
Digital Elevation Model (DEM) 

Metadata: 
• Identification_Information 
• Data_Quality_Information 
• Spatial_Data_Organization_Information 
• Spatial_Reference_Information 
• Entity_and_Attribute_Information 
• Distribution_Information 
• Metadata_Reference_Information 

 
Identification_Information:  

Citation:  
Citation_Information:  
Originator:  
Florida Geological Survey, Florida Department of Environmental Protection  
Publication_Date: Unpublished Material 
Title: Digital Elevation Model (DEM) 
Geospatial_Data_Presentation_Form: raster digital data 
Online_Linkage: \\fgs04\fgs\Projects\FAVA\FAVA_Model\metadata\dem1_04 
Description:  
Abstract: Digital Elevation Model for the State of Florida 
Purpose:  
Data created/updated for use in the development of evidential layers used in the Florida Aquifer 
Vulnerability Assessment (FAVA) Model.  
Supplemental_Information:  
Explanation and further description can be found in Florida Aquifer Vulnerability Assessment 
(FAVA): Contaminant potential of Florida's principal aquifer systems, Florida Geological Survey 
Bulletin No. 67  
Time_Period_of_Content:  
Time_Period_Information:  
Single_Date/Time:  
Calendar_Date: unknown 
Time_of_Day: unknown 
Currentness_Reference: ground condition 
Status:  
Progress: Complete 
Maintenance_and_Update_Frequency: None planned 
Spatial_Domain:  
Bounding_Coordinates:  
West_Bounding_Coordinate: -87.649870 
East_Bounding_Coordinate: -79.800996 
North_Bounding_Coordinate: 31.219123 
South_Bounding_Coordinate: 24.376234 
Keywords:  
Theme:  
Theme_Keyword: Digital Elevation Model 
Theme_Keyword: Florida 
Theme_Keyword: DEM 
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Theme_Keyword: Contours 
Theme_Keyword: Elevation 
Theme_Keyword: Topography 
Place:  
Place_Keyword: Florida 
Place_Keyword: Peninsula 
Place_Keyword: South East 
Place_Keyword: United States of America 
Stratum:  
Stratum_Keyword: Elevation 
Stratum_Keyword: Topography 
Access_Constraints: None 
Use_Constraints:  
This geologic data was developed by the Florida Department of Environmental Protection (FDEP) - 
Florida Geological Survey (FGS) to carry out agency responsibilities related to management, 
protection, and development of Florida's natural resources. Although efforts have been made to make 
the information accurate and useful, the FDEP/FGS assumes no responsibility for errors in the 
information and does not guarantee that the data are free from errors or inaccuracies. Similarly 
FDEP/FGS assumes no responsibility for the consequences of inappropriate uses or interpretations of 
the data. As such, these digital data are distributed on "as is" basis and the user assumes all risk as to 
their quality, the results obtained from their use, and the performance of the data. FDEP/FGS bears no 
responsibility to inform users of any subsequent changes made to this data. Anyone using this data is 
advised that precision implied by the data may far exceed actual precision. Comments on this data are 
invited and FDEP/FGS would appreciate that documented errors be brought to staff attention. The 
development of these data sets represents a major investment of staff time and effort. As a 
professional responsibility, we expect that the FDEP/FGS will receive proper credit when you utilize 
these data sets. Further, since part of this data was developed and collected with U.S. Government or 
State of Florida funding, no proprietary rights may be attached to it in whole or in part, nor may it be 
sold to the U.S. Government or the Florida State Government as part of any procurement of products 
or services.  
 
Point_of_Contact:  
Contact_Information:  
Contact_Person_Primary:  
Contact_Person: Jonathan Arthur, PhD., P.G. 
Contact_Organization: Florida Geological Survey 
Contact_Position: Professional Geologist Supervisor 
Contact_Address:  
Address_Type: mailing and physical address 
Address: Florida Geological Survey 
Address: Gunter Building MS# 720 
City: Tallahassee 
State_or_Province: FL 
Postal_Code: 32304-7700 
Country: U.S.A. 
Contact_Voice_Telephone: 850.488.4191 
Contact_Facsimile_Telephone: 850.488.8086 
Contact_Electronic_Mail_Address: Jonathan.Arthur@dep.state.fl.us 
Browse_Graphic:  
Browse_Graphic_File_Name: dem1_04_image.TIF 
Browse_Graphic_File_Description:  
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Figure No. 7 Included in the Florida Aquifer Vulnerability Assessment (FAVA): Contaminant 
potential of Florida's principal aquifer systems  
Browse_Graphic_File_Type: TIFF 
Browse_Graphic:  
Browse_Graphic_File_Name: dem1_04_image_zoom.TIF 
Browse_Graphic_File_Description:  
Large scale image of the Trail Ridge area in Northern peninsular Florida  
Browse_Graphic_File_Type: TIFF 
Data_Set_Credit: Florida Geological Survey 
Native_Data_Set_Environment:  
Microsoft Windows 2000 Version 5.1 (Build 2600) Service Pack 2; ESRI ArcCatalog 8.3.0.800  
Cross_Reference:  
Citation_Information:  
Originator: Florida Geological Survey 
Publication_Date: November 2003 
Publication_Time: Unknown 
Title:  
fl_contoursalb 1:24000 Topographic Contour Lines for the Florida Peninsula  
Geospatial_Data_Presentation_Form: vector digital data 

 
Data_Quality_Information:  

Attribute_Accuracy:  
Attribute_Accuracy_Report:  
Elevations based on the USGS 7.5-minute quadrangle maps. Elevation values have a 5-foot or 10-foot 
vertical accuracy and is dependent on the contour interval reported on the quadrangle maps. 
Horizontal accuracy is the same as reported on the paper maps.  
Quantitative_Attribute_Accuracy_Assessment:  
Attribute_Accuracy_Value: Value 
Attribute_Accuracy_Explanation: Elevation of the cell is in feet above mean sea level 
Lineage:  
Source_Information:  
Source_Citation:  
Citation_Information:  
Title: United States Geological Survey Topographic Maps 
Source_Scale_Denominator: 1:24 000 
Type_of_Source_Media: paper 
Source_Time_Period_of_Content:  
Source_Currentness_Reference: publication date 
Process_Step:  
Process_Description:  
1. All the contours were merged into one large coverage. 2. A directory was made for each county 
(counties parallel and south of Lake Okeechobee were merged together due to the lack of contours 
there. The Florida Keys were also completed separately. 3. The contours for each county were clipped 
based on a six-kilometer buffer of the county. 4. Shoreline (zero contour line) was created by 
converting the detailed counties shapefile to an outline then clipping the Georgia border and also 
clipped by the six kilometer buffer. 5. A triangular irregular network (TIN) was then created from the 
two coverages and was then clipped to a one kilometer buffer of the each county or area polygon. 6. 
The TINs for each county or area polygon were then converted to grids. 7. The grids were then 
combined using the MOSAIC command, to create the statewide elevation model.  
Process_Date: Unknown 
Process_Step:  
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Process_Description: Dataset copied. 
Source_Used_Citation_Abbreviation: U:\Projects\FAVA\fava_data\dem_elev\dem1_04 

 
Spatial_Data_Organization_Information:  

Direct_Spatial_Reference_Method: Raster 
Raster_Object_Information:  
Raster_Object_Type: Grid Cell 
Row_Count: 50205 
Column_Count: 49860 
Vertical_Count: 1 

 
Spatial_Reference_Information:  

Horizontal_Coordinate_System_Definition:  
Planar:  
Map_Projection:  
Map_Projection_Name: Albers Conical Equal Area 
Albers_Conical_Equal_Area:  
Standard_Parallel: 24.000000 
Standard_Parallel: 31.500000 
Longitude_of_Central_Meridian: -84.000000 
Latitude_of_Projection_Origin: 24.000000 
False_Easting: 400000.000000 
False_Northing: 0.000000 
Planar_Coordinate_Information:  
Planar_Coordinate_Encoding_Method: row and column 
Coordinate_Representation:  
Abscissa_Resolution: 15.000000 
Ordinate_Resolution: 15.000000 
Planar_Distance_Units: meters 
Geodetic_Model:  
Horizontal_Datum_Name: D_North_American_1983_HARN 
Ellipsoid_Name: Geodetic Reference System 80 
Semi-major_Axis: 6378137.000000 
Denominator_of_Flattening_Ratio: 298.257222 

 
Entity_and_Attribute_Information:  

Detailed_Description:  
Entity_Type:  
Entity_Type_Label: Digital Elevation Model (DEM) 
Attribute:  
Attribute_Label: ObjectID 
Attribute_Definition: Internal feature number. 
Attribute_Definition_Source: ESRI 
Attribute_Domain_Values:  
Unrepresentable_Domain:  
Sequential unique whole numbers that are automatically generated.  
Attribute:  
Attribute_Label: Value 
Attribute_Definition: Elevation in feet above mean sea level 
Attribute:  
Attribute_Label: Count 
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Distribution_Information:  

Resource_Description: Downloadable Data 
Standard_Order_Process:  
Digital_Form:  
Digital_Transfer_Information:  
Transfer_Size: 259.560 

 
Metadata_Reference_Information:  

Metadata_Date: 20050107 
Metadata_Review_Date: 20041028 
Metadata_Contact:  
Contact_Information:  
Contact_Organization_Primary:  
Contact_Organization: Florida Geological Survey (FGS) 
Contact_Person: Alan Baker 
Contact_Position: Professional Geologist I 
Contact_Address:  
Address_Type: mailing and physical address 
Address: Gunter Building MS #720 
Address: 903 W. Tennessee St. 
City: Tallahassee 
State_or_Province: Florida 
Postal_Code: 32304-7700 
Country: U.S.A. 
Contact_Voice_Telephone: 850.488.4191 x 122 
Contact_Facsimile_Telephone: 850.488.8086 
Contact_Electronic_Mail_Address: Alan.Baker@dep.state.fl.us 
Metadata_Standard_Name: FGDC Content Standards for Digital Geospatial Metadata 
Metadata_Standard_Version: FGDC-STD-001-1998 
Metadata_Time_Convention: local time 
Metadata_Extensions:  
Online_Linkage: <http://www.esri.com/metadata/esriprof80.html> 
Profile_Name: ESRI Metadata Profile 
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